首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The human mind and body respond to stress, a state of perceived threat to homeostasis, by activating the sympathetic nervous system and secreting the catecholamines adrenaline and noradrenaline in the 'fight-or-flight' response. The stress response is generally transient because its accompanying effects (for example, immunosuppression, growth inhibition and enhanced catabolism) can be harmful in the long term. When chronic, the stress response can be associated with disease symptoms such as peptic ulcers or cardiovascular disorders, and epidemiological studies strongly indicate that chronic stress leads to DNA damage. This stress-induced DNA damage may promote ageing, tumorigenesis, neuropsychiatric conditions and miscarriages. However, the mechanisms by which these DNA-damage events occur in response to stress are unknown. The stress hormone adrenaline stimulates β(2)-adrenoreceptors that are expressed throughout the body, including in germline cells and zygotic embryos. Activated β(2)-adrenoreceptors promote Gs-protein-dependent activation of protein kinase A (PKA), followed by the recruitment of β-arrestins, which desensitize G-protein signalling and function as signal transducers in their own right. Here we elucidate a molecular mechanism by which β-adrenergic catecholamines, acting through both Gs-PKA and β-arrestin-mediated signalling pathways, trigger DNA damage and suppress p53 levels respectively, thus synergistically leading to the accumulation of DNA damage. In mice and in human cell lines, β-arrestin-1 (ARRB1), activated via β(2)-adrenoreceptors, facilitates AKT-mediated activation of MDM2 and also promotes MDM2 binding to, and degradation of, p53, by acting as a molecular scaffold. Catecholamine-induced DNA damage is abrogated in Arrb1-knockout (Arrb1(-/-)) mice, which show preserved p53 levels in both the thymus, an organ that responds prominently to acute or chronic stress, and in the testes, in which paternal stress may affect the offspring's genome. Our results highlight the emerging role of ARRB1 as an E3-ligase adaptor in the nucleus, and reveal how DNA damage may accumulate in response to chronic stress.  相似文献   

2.
A group of adult somatic cell cloned mice were obtained by using cumulus cells as nuclei donor cells. To study the effect of different nuclear transfer (NT) and activation methods on the development of mouse cloned embryos, embryos were reconstructed using two traditional NT methods (electrofusion and direct injection) and four activation treatments (electric pulse, ethanol, SrCl2 and electric pulse combined with SrCl2). The data showed that the efficiency of reconstruction using the direct injection method is significantly higher (90.7%) than that of the electrofusion method (49.7%). Parthenogenetic embryos can develop to blastocyst stage with three activation conditions, including ethanol, electric pulse and SrCl2; however, the rates of development to blastocyst after ethanol and electric pulse acti-vation (52.4%, 54.2%) are significantly lower than after SrCl2 activation (76.9%). Treatment of embryos for 6 h with 10 mmol/L SrCl2 was found to be the best condition for activation of parthenogenetic as well as reconstructed embryos. By contrast, reconstructed embryos failed to develop to blastocyst stage after being activated by ethanol. The use of either injection or electrofusion for embryo reconstruction affected the pre-implantation development. However, after transfer in pseudopregnant mice, cloned mice were obtained from both methods.  相似文献   

3.
以Eya1基因的敲除突变小鼠为实验对象,初步研究了Eya1基因在小鼠眼发育中的作用.结果发现,Eya1基因功能完全丧失的敲除突变纯合子(Eya 1-/-)胚胎的双侧眼皮均不能融合,27.3%的Eya1 /-胚胎单侧或双侧眼皮不能完全融合;而在Eya 1基因有较强表达的其它主要结构如晶状体(1ens)、色素视网膜(pigmental retina)、眼神(optic nerve)中均未发现异常.结果表明,Eya 1为小鼠眼皮融合的决定性基因;而在眼的其它结构的发育中存在与Eya 1具有互补作用的基因。  相似文献   

4.
Reactive oxygen species are involved in many cellular metabolic and signalling processes and are thought to have a role in disease, particularly in carcinogenesis and ageing. We have generated mice with targeted inactivation of Prdx1, a member of the peroxiredoxin family of antioxidant enzymes. Here we show that mice lacking Prdx1 are viable and fertile but have a shortened lifespan owing to the development beginning at about 9 months of severe haemolytic anaemia and several malignant cancers, both of which are also observed at increased frequency in heterozygotes. The haemolytic anaemia is characterized by an increase in erythrocyte reactive oxygen species, leading to protein oxidation, haemoglobin instability, Heinz body formation and decreased erythrocyte lifespan. The malignancies include lymphomas, sarcomas and carcinomas, and are frequently associated with loss of Prdx1 expression in heterozygotes, which suggests that this protein functions as a tumour suppressor. Prdx1-deficient fibroblasts show decreased proliferation and increased sensitivity to oxidative DNA damage, whereas Prdx1-null mice have abnormalities in numbers, phenotype and function of natural killer cells. Our results implicate Prdx1 as an important defence against oxidants in ageing mice.  相似文献   

5.
Mutations in the IDH1 and IDH2 genes encoding isocitrate dehydrogenases are frequently found in human glioblastomas and cytogenetically normal acute myeloid leukaemias (AML). These alterations are gain-of-function mutations in that they drive the synthesis of the ‘oncometabolite’ R-2-hydroxyglutarate (2HG). It remains unclear how IDH1 and IDH2 mutations modify myeloid cell development and promote leukaemogenesis. Here we report the characterization of conditional knock-in (KI) mice in which the most common IDH1 mutation, IDH1(R132H), is inserted into the endogenous murine Idh1 locus and is expressed in all haematopoietic cells (Vav-KI mice) or specifically in cells of the myeloid lineage (LysM-KI mice). These mutants show increased numbers of early haematopoietic progenitors and develop splenomegaly and anaemia with extramedullary haematopoiesis, suggesting a dysfunctional bone marrow niche. Furthermore, LysM-KI cells have hypermethylated histones and changes to DNA methylation similar to those observed in human IDH1- or IDH2-mutant AML. To our knowledge, our study is the first to describe the generation and characterization of conditional IDH1(R132H)-KI mice, and also the first report to demonstrate the induction of a leukaemic DNA methylation signature in a mouse model. Our report thus sheds light on the mechanistic links between IDH1 mutation and human AML.  相似文献   

6.
In obesity and type 2 diabetes, expression of the GLUT4 glucose transporter is decreased selectively in adipocytes. Adipose-specific Glut4 (also known as Slc2a4) knockout (adipose-Glut4(-/-)) mice show insulin resistance secondarily in muscle and liver. Here we show, using DNA arrays, that expression of retinol binding protein-4 (RBP4) is elevated in adipose tissue of adipose-Glut4(-/-) mice. We show that serum RBP4 levels are elevated in insulin-resistant mice and humans with obesity and type 2 diabetes. RBP4 levels are normalized by rosiglitazone, an insulin-sensitizing drug. Transgenic overexpression of human RBP4 or injection of recombinant RBP4 in normal mice causes insulin resistance. Conversely, genetic deletion of Rbp4 enhances insulin sensitivity. Fenretinide, a synthetic retinoid that increases urinary excretion of RBP4, normalizes serum RBP4 levels and improves insulin resistance and glucose intolerance in mice with obesity induced by a high-fat diet. Increasing serum RBP4 induces hepatic expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and impairs insulin signalling in muscle. Thus, RBP4 is an adipocyte-derived 'signal' that may contribute to the pathogenesis of type 2 diabetes. Lowering RBP4 could be a new strategy for treating type 2 diabetes.  相似文献   

7.
8.
Misrepair of DNA double-strand breaks produced by the V(D)J recombinase (the RAG1/RAG2 proteins) at immunoglobulin (Ig) and T cell receptor (Tcr) loci has been implicated in pathogenesis of lymphoid malignancies in humans and in mice. Defects in DNA damage response factors such as ataxia telangiectasia mutated (ATM) protein and combined deficiencies in classical non-homologous end joining and p53 predispose to RAG-initiated genomic rearrangements and lymphomagenesis. Although we showed previously that RAG1/RAG2 shepherd the broken DNA ends to classical non-homologous end joining for proper repair, roles for the RAG proteins in preserving genomic stability remain poorly defined. Here we show that the RAG2 carboxy (C) terminus, although dispensable for recombination, is critical for maintaining genomic stability. Thymocytes from 'core' Rag2 homozygotes (Rag2(c/c) mice) show dramatic disruption of Tcrα/δ locus integrity. Furthermore, all Rag2(c/c) p53(-/-) mice, unlike Rag1(c/c) p53(-/-) and p53(-/-) animals, rapidly develop thymic lymphomas bearing complex chromosomal translocations, amplifications and deletions involving the Tcrα/δ and Igh loci. We also find these features in lymphomas from Atm(-/-) mice. We show that, like ATM-deficiency, core RAG2 severely destabilizes the RAG post-cleavage complex. These results reveal a novel genome guardian role for RAG2 and suggest that similar 'end release/end persistence' mechanisms underlie genomic instability and lymphomagenesis in Rag2(c/c) p53(-/-) and Atm(-/-) mice.  相似文献   

9.
雌性Akt2基因缺失小鼠生殖表型研究   总被引:1,自引:0,他引:1  
通过对雌性Akt2 基因敲除纯合子小鼠(Akt2(-/-))及野生型小鼠(Akt2(+/+))基础指标、大体形态学指标、血清糖脂水平和性激素水平等方面的评估,探讨Akt2基因缺失对糖脂代谢和卵巢功能影响.雌性Akt2(+/+)及Akt2(-/-)小鼠各16只,行口服糖耐量(OGTT)实验(2mg/kg),阴道涂片监测动情周期,于动情间期进行动力学实验,将纯合子和野生型小鼠分别随机分为空白组和刺激组2组,刺激组予HMG(人绝经期尿促性激素)(0.5IU/g)刺激2h,空白组予等体积的生理盐水刺激2h,检测各组小鼠体重、体内脂肪重量、血脂、空腹胰岛素水平和生殖激素水平,卵巢常规病理检测各组小鼠卵巢形态学变化.结果发现,同野生型小鼠相比,纯合子小鼠动情周期显着延长(P<0.05),随机血糖、0h血糖、2h血糖、空腹胰岛素水平和HOMA指数均显著升高(P<0.05),而血清甘油三醑(TG)水平则显著降低(P<0.05);性激素检测发现纯合子小鼠血清17羟孕酮(17-OHP)、雌二醇(E2)、△17-OHP、△E2均显着升高.综上,本文认为Akt2基因不仅可以影响机体糖脂代谢,同时也影响卵巢功能,说明胰岛素调节糖代谢的关键信号分子对卵巢生殖功能同样具有重要的调节作用.  相似文献   

10.
《科学通报(英文版)》1998,43(15):1294-1294
The DNA of human factor Ⅸ (hFⅨ) gene vector pMCⅨm, which had been proven to be able to express in in vitro and living cells, was introduced into 586 zygotes of Kunming White Mice by positive pressure microinjection technique with manual operation. The 499 survival embryos after microinjection were then transferred into pseudopregnant recipient mice and 216 F 0 pups were born. The analysis of PCR and Southern blot hybridization showed that, of the 216, 6 (2 females and 4 males) were integrated with foreign DNA in their genomes, giving an integration frequency of 3% (6/216). Two F\-0 female transgenic mice could express hFⅨ protein in their milk and the content was over 100 ng/mL as measured with ELISA. The biological activities of hFⅨ in the milk of two F\-0 mice were 44 67% and 79 43%, respectively.  相似文献   

11.
By using the approach of immunofluorescence staining with an antibody against 5-methylcytosine (5MeC), the present study detected the DNA methylation patterns of cloned ovine embryos. The embryos derived from in vitro fertilization were also examined for reference purpose. The results showed that: (1) during the preimplantation development, cloned embryos displayed a similar demethylation profile to the fertilized embryos; that is, the methylation level decreased to the lowest at 8-cell stage, and then increased again at morulae stage. However, methylation level was obviously higher in cloned embryos than in stage-matched fertilized embryos, especially at 8-cell stage and afterwards; (2) at blastocyst stage, the methylation pattern in cloned embryos was different from that in fertilized embryos. In cloned blastocyst, inner cell mass (ICM) exhibited a comparable level to trophectoderm cells (TE), while in in-vitro fertilized blastocyst the methylation level of ICM was lower than that of TE, which is not consistent with that reported by other authors. These results indicate that DNA methylation is abnormally reprogrammed in cloned embryos, implying that aberrant DNA methylation reprogramming may be one of the factors causing cloned embryos developmental failure.  相似文献   

12.
Erythroid cells undergo enucleation and the removal of organelles during terminal differentiation. Although autophagy has been suggested to mediate the elimination of organelles for erythroid maturation, the molecular mechanisms underlying this process remain undefined. Here we report a role for a Bcl-2 family member, Nix (also called Bnip3L), in the regulation of erythroid maturation through mitochondrial autophagy. Nix(-/-) mice developed anaemia with reduced mature erythrocytes and compensatory expansion of erythroid precursors. Erythrocytes in the peripheral blood of Nix(-/-) mice exhibited mitochondrial retention and reduced lifespan in vivo. Although the clearance of ribosomes proceeded normally in the absence of Nix, the entry of mitochondria into autophagosomes for clearance was defective. Deficiency in Nix inhibited the loss of mitochondrial membrane potential (DeltaPsi(m)), and treatment with uncoupling chemicals or a BH3 mimetic induced the loss of DeltaPsi(m) and restored the sequestration of mitochondria into autophagosomes in Nix(-/-) erythroid cells. These results suggest that Nix-dependent loss of DeltaPsi(m) is important for targeting the mitochondria into autophagosomes for clearance during erythroid maturation, and interference with this function impairs erythroid maturation and results in anaemia. Our study may also provide insights into molecular mechanisms underlying mitochondrial quality control involving mitochondrial autophagy.  相似文献   

13.
目的 建立Smad2基因敲除小鼠胚胎库。方法 利用OPS法对Smad2基因敲除小鼠胚胎进行玻璃化冷冻保存,并比较不同杂交组合小鼠的超数排卵数、解冻胚胎的复苏率及发育率。结果 两组不同杂交组合(Smad2^+/-♂×Smad2^+/-♀和Smad2^+/-×Smad2^+/-♀)小鼠平均超排卵数分别为14.13枚和24.60枚;复苏率分别为90.16%和91.67%;囊胚发育率分别为73.08%和77.05%。这些结果表明Smad2基因敲除杂合子母鼠的超排数量明显低于野生型母鼠的超排数量,而二者胚胎解冻后的复苏率和囊胚发育率没有显著差异。因此我们主要通过对野生型小鼠超数排卵,然后与Smad2基因敲除杂合子雄鼠交配的方法获取胚胎,进行玻璃化冷冻保存,现已冻存胚胎1256枚。结论 成功建立了Smad2基因敲除小鼠胚胎库。  相似文献   

14.
M F Lu  C Pressman  R Dyer  R L Johnson  J F Martin 《Nature》1999,401(6750):276-278
Rieger syndrome, an autosomal dominant disorder, includes ocular, craniofacial and umbilical abnormalities. The pitx2 homeobox gene, which is mutated in Rieger syndrome, has been proposed to be the effector molecule interpreting left-right axial information from the early embryonic trunk to each organ. Here we have used gene targeting in mice to generate a loss-of-function allele that would be predicted to result in organ randomization or isomerization. Although pitx2-/- embryos had abnormal cardiac morphogenesis, mutant hearts looped in the normal direction. Pitx2-/- embryos had correctly oriented, but arrested, embryonic rotation and right pulmonary isomerism. They also had defective development of the mandibular and maxillary facial prominences, regression of the stomodeum and arrested tooth development. Fgf8 expression was absent, and Bmp4 expression was expanded in the branchial-arch ectoderm. These data reveal a critical role for pitx2 in left-right asymmetry but indicate that pitx2 may function at an intermediate step in cardiac morphogenesis and embryonic rotation.  相似文献   

15.
16.
Poly(ADP-ribose) polymerase (PARP1) facilitates DNA repair by binding to DNA breaks and attracting DNA repair proteins to the site of damage. Nevertheless, PARP1-/- mice are viable, fertile and do not develop early onset tumours. Here, we show that PARP inhibitors trigger gamma-H2AX and RAD51 foci formation. We propose that, in the absence of PARP1, spontaneous single-strand breaks collapse replication forks and trigger homologous recombination for repair. Furthermore, we show that BRCA2-deficient cells, as a result of their deficiency in homologous recombination, are acutely sensitive to PARP inhibitors, presumably because resultant collapsed replication forks are no longer repaired. Thus, PARP1 activity is essential in homologous recombination-deficient BRCA2 mutant cells. We exploit this requirement in order to kill BRCA2-deficient tumours by PARP inhibition alone. Treatment with PARP inhibitors is likely to be highly tumour specific, because only the tumours (which are BRCA2-/-) in BRCA2+/- patients are defective in homologous recombination. The use of an inhibitor of a DNA repair enzyme alone to selectively kill a tumour, in the absence of an exogenous DNA-damaging agent, represents a new concept in cancer treatment.  相似文献   

17.
The 'ataxia telangiectasia mutated' (Atm) gene maintains genomic stability by activating a key cell-cycle checkpoint in response to DNA damage, telomeric instability or oxidative stress. Mutational inactivation of the gene causes an autosomal recessive disorder, ataxia-telangiectasia, characterized by immunodeficiency, progressive cerebellar ataxia, oculocutaneous telangiectasia, defective spermatogenesis, premature ageing and a high incidence of lymphoma. Here we show that ATM has an essential function in the reconstitutive capacity of haematopoietic stem cells (HSCs) but is not as important for the proliferation or differentiation of progenitors, in a telomere-independent manner. Atm-/- mice older than 24 weeks showed progressive bone marrow failure resulting from a defect in HSC function that was associated with elevated reactive oxygen species. Treatment with anti-oxidative agents restored the reconstitutive capacity of Atm-/- HSCs, resulting in the prevention of bone marrow failure. Activation of the p16(INK4a)-retinoblastoma (Rb) gene product pathway in response to elevated reactive oxygen species led to the failure of Atm-/- HSCs. These results show that the self-renewal capacity of HSCs depends on ATM-mediated inhibition of oxidative stress.  相似文献   

18.
Heart failure is a leading cause of morbidity and mortality in industrialized countries. Although infection with microorganisms is not involved in the development of heart failure in most cases, inflammation has been implicated in the pathogenesis of heart failure. However, the mechanisms responsible for initiating and integrating inflammatory responses within the heart remain poorly defined. Mitochondria are evolutionary endosymbionts derived from bacteria and contain DNA similar to bacterial DNA. Mitochondria damaged by external haemodynamic stress are degraded by the autophagy/lysosome system in cardiomyocytes. Here we show that mitochondrial DNA that escapes from autophagy cell-autonomously leads to Toll-like receptor (TLR) 9-mediated inflammatory responses in cardiomyocytes and is capable of inducing myocarditis and dilated cardiomyopathy. Cardiac-specific deletion of lysosomal deoxyribonuclease (DNase) II showed no cardiac phenotypes under baseline conditions, but increased mortality and caused severe myocarditis and dilated cardiomyopathy 10 days after treatment with pressure overload. Early in the pathogenesis, DNase II-deficient hearts showed infiltration of inflammatory cells and increased messenger RNA expression of inflammatory cytokines, with accumulation of mitochondrial DNA deposits in autolysosomes in the myocardium. Administration of inhibitory oligodeoxynucleotides against TLR9, which is known to be activated by bacterial DNA, or ablation of Tlr9 attenuated the development of cardiomyopathy in DNase II-deficient mice. Furthermore, Tlr9 ablation improved pressure overload-induced cardiac dysfunction and inflammation even in mice with wild-type Dnase2a alleles. These data provide new perspectives on the mechanism of genesis of chronic inflammation in failing hearts.  相似文献   

19.
作为一种提取生物活性成分的常用有机溶剂,乙醇是药物筛选中溶解水溶性较差样品的候选助溶剂。本文研究了不同浓度乙醇对斑马鱼胚胎存活、循环系统发育、血管生成等的影响,为其作为溶剂在斑马鱼模型抗血管生成药物筛选中的应用提供参考。结果显示,0.01%乙醇不会造成胚胎的死亡和仔鱼循环系统畸形,0.1%乙醇引起仔鱼心囊水肿,乙醇浓度达到1%时出现胚胎死亡。低于或等于1%乙醇对仔鱼体节间血管生成无抑制作用。以上结果表明,浓度低于或等于0.01%的乙醇不会影响对被筛样品抗血管生成活性和毒性的评价。  相似文献   

20.
半克隆(Semi-Cloned)胚胎是通过注射体细胞核到未去核的卵母细胞中产生的。在半克隆胚胎中,体细胞被用来作为精子的替代物。然而,由于异常的染色体分离,构建的半克隆胚胎在激活后形成了非整倍体而导致胚胎发育受到严重影响,不能发育到期。本研究通过抑制小鼠半克隆胚胎在激活过程中染色体数目减半,避免非整倍体胚胎形成,研究四倍体半克隆(TetraploidSemi-cloned,TSC)胚胎的发育和体细胞核的掺入对胚胎发育的影响。结果显示,TSC胚胎的体外发育率显著高于二倍体半克隆胚胎,与正常受精卵及孤雌激活对照无显著性差异,但TSC胚胎的细胞数在桑椹胚和囊胚期比正常二倍体受精胚胎和孤雌激活胚胎少。通过Oct-4染色发现,TSC胚胎囊胚期内细胞团(InnerCellMass,ICM)细胞很少或者没有。移植63个四倍体半克隆胚胎到3只假孕母鼠体内,得到20个胎盘,但没有得到胎儿。组蛋白乙酰化和DNA甲基化检测显示,部分TSC胚胎在囊胚期没有形成正常受精胚胎在ICM和滋养外胚层(Trophectoderm,TE)之间的差异分布。TSC胚胎的基因表达不依赖于细胞分裂次数而依赖于发育时间。虽然TSC胚胎避免了二倍体半克隆胚胎形成非整倍体现象,但由于TSC胚胎没有ICM细胞或ICM细胞很少,所以只能形成胎盘而不能形成胎儿。本实验第一次较为全面地研究了TSC胚胎的发育,同时也为研究体细胞核再程序化、基因打靶技术提供了一种新的途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号