首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Gcn5 bromodomain co-ordinates nucleosome remodelling   总被引:7,自引:0,他引:7  
Syntichaki P  Topalidou I  Thireos G 《Nature》2000,404(6776):414-417
  相似文献   

2.
3.
4.
5.
Enhancement of TBP binding by activators and general transcription factors.   总被引:29,自引:0,他引:29  
X Y Li  A Virbasius  X Zhu  M R Green 《Nature》1999,399(6736):605-609
  相似文献   

6.
7.
8.
9.
Iyer VR  Horak CE  Scafe CS  Botstein D  Snyder M  Brown PO 《Nature》2001,409(6819):533-538
  相似文献   

10.
11.
Breiling A  Turner BM  Bianchi ME  Orlando V 《Nature》2001,412(6847):651-655
  相似文献   

12.
Nucleosome mobilization catalysed by the yeast SWI/SNF complex.   总被引:18,自引:0,他引:18  
  相似文献   

13.
A chromatin remodelling complex involved in transcription and DNA processing   总被引:44,自引:0,他引:44  
Shen X  Mizuguchi G  Hamiche A  Wu C 《Nature》2000,406(6795):541-544
  相似文献   

14.
Bending of promoter DNA on binding of heat shock transcription factor   总被引:27,自引:0,他引:27  
D J Shuey  C S Parker 《Nature》1986,323(6087):459-461
  相似文献   

15.
Lei M  Podell ER  Baumann P  Cech TR 《Nature》2003,426(6963):198-203
Telomeres, specialized protein-DNA complexes that cap the ends of linear chromosomes, are essential for protecting chromosomes from degradation and end-to-end fusions. The Pot1 (protection of telomeres 1) protein is a widely distributed eukaryotic end-capping protein, having been identified in fission yeast, microsporidia, plants and animals. Schizosaccharomyces pombe Pot1p is essential for telomere maintenance, and human POT1 has been implicated in telomerase regulation. Pot1 binds telomeric single-stranded DNA (ssDNA) with exceptionally high sequence specificity, the molecular basis of which has been unknown. Here we describe the 1.9-A-resolution crystal structure of the amino-terminal DNA-binding domain of S. pombe Pot1p complexed with ssDNA. The protein adopts an oligonucleotide/oligosaccharide-binding (OB) fold with two loops that protrude to form a clamp for ssDNA binding. The structure explains the sequence specificity of binding: in the context of the Pot1 protein, DNA self-recognition involving base-stacking and unusual G-T base pairs compacts the DNA. Any sequence change disrupts the ability of the DNA to form this structure, preventing it from contacting the array of protein hydrogen-bonding groups. The structure also explains how Pot1p avoids binding the vast excess of RNA in the nucleus.  相似文献   

16.
17.
Bugreev DV  Mazina OM  Mazin AV 《Nature》2006,442(7102):590-593
Homologous recombination has a crucial function in the repair of DNA double-strand breaks and in faithful chromosome segregation. The mechanism of homologous recombination involves the search for homology and invasion of the ends of a broken DNA molecule into homologous duplex DNA to form a cross-stranded structure, a Holliday junction (HJ). A HJ is able to undergo branch migration along DNA, generating increasing or decreasing lengths of heteroduplex. In both prokaryotes and eukaryotes, the physical evidence for HJs, the key intermediate in homologous recombination, was provided by electron microscopy. In bacteria there are specialized enzymes that promote branch migration of HJs. However, in eukaryotes the identity of homologous recombination branch-migration protein(s) has remained elusive. Here we show that Rad54, a Swi2/Snf2 protein, binds HJ-like structures with high specificity and promotes their bidirectional branch migration in an ATPase-dependent manner. The activity seemed to be conserved in human and yeast Rad54 orthologues. In vitro, Rad54 has been shown to stimulate DNA pairing of Rad51, a key homologous recombination protein. However, genetic data indicate that Rad54 protein might also act at later stages of homologous recombination, after Rad51 (ref. 13). Novel DNA branch-migration activity is fully consistent with this late homologous recombination function of Rad54 protein.  相似文献   

18.
S M Block  H C Berg 《Nature》1984,309(5967):470-472
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号