共查询到16条相似文献,搜索用时 78 毫秒
1.
对于无穷数列集 R∞ ={z =(zi) ∞i=1:zi ∈R } ,定义度量 ρ(x ,y) =∑∞i=1|xi- yi|2 i(1+|xi- yi|) , x=(xi) ∞i=1、y=(yi) ∞i=1∈R∞ .在此度量下 ,考虑Hausdorff测度Hs,0≤s <∞ ,并求出一些无穷数列集的Hausdorff维数 相似文献
2.
利用密度的性质,给出了满足一定密度条件的乘积集的维数公式,最后一个简单例子说明了本文的公式独立于文献的命题7.4的条件。 相似文献
3.
刘敏思 《华中师范大学学报(自然科学版)》1991,30(2):0-0
本文研究在高维情况下Cantor构造集的Hausdorff维数及测度,得到如下结果:若I~n(?)R~n(n为自然数)是R~n空间中的n维超单位立方体,则对任意一个满足0相似文献
4.
讨论了线性迭代系统S1(x)=εx,S2(x)=ε^2x+1—ε^2,在满足开集条件时,产生的广义Cantor集E并获得了F,并获得了F的Hausdorff维数s及Hausdom测度的精确值. 相似文献
5.
本文对三分Cantor集进行适当的推广,构造出一类(4m+1)(m∈N)分Cantor集,并计算其Hausdorff维数与测度;依据三分Cantor集和引理给出(4m+1)(m∈N)分Cantor集Hausdorff维数与测度的几种新颖的方法;以定理的形式给出(4m+1)分Cantor集其Hausdorff维数s=lo... 相似文献
6.
陈晓丹 《四川师范大学学报(自然科学版)》2005,28(2):162-164
用一种比较初等的方法估计了一类齐次Cantor集的Hausdorff测度的下限,再用k阶基本区间作为覆盖类估计了该类齐次Cantor集的上限,从而得到了该类齐次Cantor集的Hausdorff测度的准确值. 相似文献
7.
本文给出了一类由m个迭代系统Si(x)=aix bi,i=1,2…m确定的广义Cantor集的Hausdorff测度等于1的充要条件. 相似文献
8.
非均匀Cantor型集的Hausdorff维数和测度 总被引:1,自引:0,他引:1
乔锐智 《西北师范大学学报(自然科学版)》1995,31(2):8-11
计算了非均匀Cantor型集的Hausdorff维数,并给出了其Hausdorff测度的上界。 相似文献
9.
林丽平 《福州大学学报(自然科学版)》1999,27(4):1-1
考虑满足开集条件的线性迭代系统 Si (x) = aix + ci , i = 1 , …, m 产生的广义 Cantor 集在m = 2 时, 得到几个不等式, 并由此给出这类广义 Cantor 集的 Hausdorff 测度的精确值: Hs ( E)= | E|s 相似文献
10.
一类推广的Cantor集的Hausdorff测度 总被引:6,自引:0,他引:6
利用Hausdorf测度的定义和1个新技巧证明了一类推广的Cantor集E的Hausdorf测度为1.进而得到更广泛的一类推广Cantor集F的Hausdorf测度的精确值 相似文献
11.
利用一种不同的途径来处理一般度量空间中的问题,给出了不用先计算s而保证s=dimHE,0〈H^s(E)或H^s(E)〈∞的集合E上的近似相似的几何条件,还给出了保证dimBE=.dimBE=dimHE的类似的条件,避开了直接的计算. 相似文献
12.
13.
14.
马玲 《兰州大学学报(自然科学版)》1998,34(3):20-26
研究了自相似分形的Hausdorf测度的上界估计问题,得到以下结果:设S是Sierpinski垫,s=log23是S的Hausdorf维数,对任一x,0<x<12,将x表为x=12i1+12i2+…,i1<i2<…,i1,i2,…∈N.则S的Hausdorf测度Hs(S)满足Hs(S)≤11-32∞j=12j3ij(1-x)s.取x=123+(124+126+…+122k+…),k=2,3,….则得到Hs(S)<0.8701.记H(x)=11-32∞j=12j3ij(1-x)s则inf0<x<12{H(x)}≥min{H(i2n)(2n-i-12n-1)S:i=1,2,…,2n-1-1}.取n=20,上机运算得inf0<x<12{H(x)}>0.8700.由此可知0.8701是本文这种方法估计Sierpinski垫的Hausdorf测度的相当好的上界. 相似文献
15.
子自相似集合的Hausdorff维数 总被引:1,自引:0,他引:1
应用符号动力系统 ,讨论了由Falconer定义的子自相似集的Hausdorff维数的连续性 ,得到了子自相似集的Hausdorff维数和盒维数的新公式 相似文献
16.
利用简单的构造方法, 对任何s∈(0,1), 证明了存在一有限型的区间连续自映射, 使得其非游荡集的Hausdorff维数是s. 相似文献