首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B Chapman  M D Jacobson  H O Reiter  M P Stryker 《Nature》1986,324(6093):154-156
Monocular lid suture during the sensitive period early in the life of a kitten disrupts normal development of inputs from the two eyes to the visual cortex, causing a decrease in the fraction of cortical cells responding to the deprived eye. Such an ocular dominance shift has been assumed to depend on patterned visual experience, because no change in cortical physiology is produced by inequalities between the two eyes in retinal illumination or temporally modulated diffuse light stimulation. A higher-level process, involving gating signals from areas outside striate cortex, has been proposed to ensure that sustained changes in synaptic efficacy occur only in response to behaviourally significant visual inputs. To test whether such a process is necessary for ocular dominance plasticity, we treated 4-week-old kittens with visual deprivation and monocular tetrodotoxin (TTX) injections to create an imbalance in the electrical activities of the two retinas in the absence of patterned vision. After 1 week of treatment we determined the ocular dominance distribution of single units in primary visual cortex. In all kittens studied, a significant ocular dominance shift was found. In addition to this physiological change, there was an anatomical change in the lateral geniculate nucleus, where cells were larger in laminae receiving input from the more active eye. Our results indicate that patterned vision is not necessary for visual cortical plasticity, and that an imbalance in spontaneous retinal activity alone can produce a significant ocular dominance shift.  相似文献   

2.
3.
Eye dominance in the visual cortex   总被引:2,自引:0,他引:2  
C Blakemore  J D Pettigrew 《Nature》1970,225(5231):426-429
  相似文献   

4.
K Fox  N Daw  H Sato  D Czepita 《Nature》1991,350(6316):342-344
Some features of the visual cortex develop postnatally in mammals. For example, geniculocortical axons that initially overlap throughout cortical layer IV segregate postnatally into two sets of interleaved eye-specific bands. NMDA (N-methyl-D-aspartate) receptors are necessary for eye-specific axon-segregation in the frog tectum, and as NMDA receptors play a greater part in synaptic transmission in early life and decrease in function during the period of axon segregation, they may be involved in the segregation of geniculocortical axons: they are well placed to do so as they transduce retinally derived signals essential for segregation. Rearing animals in the dark in early life delays segregation and prolongs the critical period for plasticity. We now report that dark-rearing of kittens also delays the loss of NMDA receptor function in the visual cortex, supporting the view that they play an important part in neuronal development and plasticity.  相似文献   

5.
As first clearly demonstrated by the experiments of Wiesel and Hubel, the developing visual cortex is exquisitely sensitive to sensory deprivation. Temporary closure of one eye of a kitten during a critical period that extends from 3 weeks to 3 months of age results in a dramatic cortical reorganization such that most neurones, originally binocularly driven, are dominated exclusively by the open eye. Recently, attention has been directed to chemical factors which may influence the degree of plasticity during the critical period. The work of Kasamatsu and pettigrew suggests that cortical catecholamines, especially noradrenaline (NA), are essential for the normal plastic response to visual deprivation. In an effort to clarify the role of NA in visual cortical plasticity, we have monocularly deprived kittens whose cortex had been depleted of catecholamines by the neurotoxin 6-hydroxydopamine (6-OHDA). We used two strategies to deplete cortical NA: the first, pioneered by Kasamatsu el al., utilized osmotic minipumps to deliver 6-OHDA to visual cortex; the second involved systemic neonatal injections of 6-OHDA, a technique which has proved effective in rodents. We found, using high-pressure liquid chromatography (HPLC), that both techniques produced a substantial reduction in the level of cortical NA. However, single unit recording in area 17 revealed that the plastic response to monocular deprivation (MD) was only diminished in the kittens depleted by minipump.  相似文献   

6.
7.
C Shaw  M Cynader 《Nature》1984,308(5961):731-734
Abundant evidence now indicates that atypical visual exposure early in the life of cats and primates can cause profound alterations in cortical organization. In particular, it has been shown that preventing the use of one eye for vision early in life results in a marked shift of ocular preference among neurones of kitten visual cortex in favour of the exposed eye. The cellular mechanisms underlying these alterations remain uncertain, but much recent attention has focused on the possible role of pharmacological agents in modifying cortical plasticity, with particular reference to catecholamines. These experiments, which have shown that agents which modify cortical noradrenaline levels can alter the degree of cortical plasticity, do not specify the mechanism of action, and leave open the possibility that other neurotransmitter systems may also be involved in cortical modifiability. We now report that chronic intracortical administration of L-glutamate during a period of monocular vision imposed on young kittens largely prevents the ocular dominance shift which normally occurs under these circumstances.  相似文献   

8.
C M Müller  J Best 《Nature》1989,342(6248):427-430
During a critical restricted period of postnatal development, the visual cortical circuitry is susceptible to modifications that are dependent on experience. If vision is restricted to only one eye during this period, the territories innervated by the deprived eye shrink considerably, whereas those innervated by the non-deprived eye expand, and the deprived eye loses the ability to influence almost all of the cells in the cortex. Thus, changes in ocular dominance are paralleled and possibly mediated by synapse elimination and axonal sprouting. Hypotheses about the mechanisms underlying ocular-dominance plasticity assume the activation of NMDA (N-methyl-D-aspartate) receptors and subsequent calcium influx as a trigger of synaptic modifications. In addition, plasticity relies on functional neuromodulatory afferents. On the basis of immunocytochemical studies, it was recently proposed that the presence of immature astrocytes is a prerequisite for visual cortical plasticity, and that the end of the critical period is causally linked to the maturation of astrocytes. Here we report, in support of this hypothesis, that resupplementation of the visual cortex of adult cats with astrocytes cultured from the visual cortex of newborn kittens reinduces ocular-dominance plasticity in adult animals.  相似文献   

9.
Early consolidation in human primary motor cortex.   总被引:26,自引:0,他引:26  
Behavioural studies indicate that a newly acquired motor skill is rapidly consolidated from an initially unstable state to a more stable state, whereas neuroimaging studies demonstrate that the brain engages new regions for performance of the task as a result of this consolidation. However, it is not known where a new skill is retained and processed before it is firmly consolidated. Some early aspects of motor skill acquisition involve the primary motor cortex (M1), but the nature of that involvement is unclear. We tested the possibility that the human M1 is essential to early motor consolidation. We monitored changes in elementary motor behaviour while subjects practised fast finger movements that rapidly improved in movement acceleration and muscle force generation. Here we show that low-frequency, repetitive transcranial magnetic stimulation of M1 but not other brain areas specifically disrupted the retention of the behavioural improvement, but did not affect basal motor behaviour, task performance, motor learning by subsequent practice, or recall of the newly acquired motor skill. These findings indicate that the human M1 is specifically engaged during the early stage of motor consolidation.  相似文献   

10.
Plasticity in the visual cortex   总被引:2,自引:0,他引:2  
A M Sillito 《Nature》1983,303(5917):477-478
  相似文献   

11.
12.
Foci of orientation plasticity in visual cortex   总被引:5,自引:0,他引:5  
Dragoi V  Rivadulla C  Sur M 《Nature》2001,411(6833):80-86
Cortical areas are generally assumed to be uniform in their capacity for adaptive changes or plasticity. Here we demonstrate, however, that neurons in the cat striate cortex (V1) show pronounced adaptation-induced short-term plasticity of orientation tuning primarily at specific foci. V1 neurons are clustered according to their orientation preference in iso-orientation domains that converge at singularities or pinwheel centres. Although neurons in pinwheel centres have similar orientation tuning and responses to those in iso-orientation domains, we find that they differ markedly in their capacity for adaptive changes. Adaptation with an oriented drifting grating stimulus alters responses of neurons located at and near pinwheel centres to a broad range of orientations, causing repulsive shifts in orientation preference and changes in response magnitude. In contrast, neurons located in iso-orientation domains show minimal changes in their tuning properties after adaptation. The anisotropy of adaptation-induced orientation plasticity is probably mediated by inhomogeneities in local intracortical interactions that are overlaid on the map of orientation preference in V1.  相似文献   

13.
14.
Induction of visual orientation modules in auditory cortex   总被引:13,自引:0,他引:13  
Sharma J  Angelucci A  Sur M 《Nature》2000,404(6780):841-847
Modules of neurons sharing a common property are a basic organizational feature of mammalian sensory cortex. Primary visual cortex (V1) is characterized by orientation modules--groups of cells that share a preferred stimulus orientation--which are organized into a highly ordered orientation map. Here we show that in ferrets in which retinal projections are routed into the auditory pathway, visually responsive neurons in 'rewired' primary auditory cortex are also organized into orientation modules. The orientation tuning of neurons within these modules is comparable to the tuning of cells in V1 but the orientation map is less orderly. Horizontal connections in rewired cortex are more patchy and periodic than connections in normal auditory cortex, but less so than connections in V1. These data show that afferent activity has a profound influence on diverse components of cortical circuitry, including thalamocortical and local intracortical connections, which are involved in the generation of orientation tuning, and long-range horizontal connections, which are important in creating an orientation map.  相似文献   

15.
16.
N V Swindale  M S Cynader 《Nature》1986,319(6054):591-593
The ability of human observers to detect Vernier breaks of as little as 5 s arc has been termed hyperacuity as this distance is substantially less than the angular separation of the bars of the highest spatial frequency of grating (approximately 1 arc min) that can be detected. Although the visual cortex is a likely candidate for the location of detectors involved in this performance, it is not known whether there are cells sensitive enough to detect deviations from co-linearity that are small compared with their spatial resolution (defined in terms of the highest spatial frequency that the cell can detect). We report here the results of physiological experiments on single units in area 17 of the cat visual cortex in which we studied the effect of introducing a Vernier break into a bar stimulus moved across the receptive field of the cell at a constant velocity. Our results show that the responses of most simple and complex cells are significantly reduced by the introduction of a Vernier break that is substantially smaller than the spatial resolution of the cell. The most sensitive cells in our sample could discriminate Vernier offsets of 3-6 arc min with a reliability of approximately 70%. This was much smaller than their spatial resolution, which was in the range 25-30 arc min. We interpret these results in terms of mechanisms that could underly the orientation selectivity of cortical neurones and suggest how our results relate to human Vernier acuity.  相似文献   

17.
Experience-dependent representation of visual categories in parietal cortex   总被引:1,自引:0,他引:1  
Freedman DJ  Assad JA 《Nature》2006,443(7107):85-88
Categorization is a process by which the brain assigns meaning to sensory stimuli. Through experience, we learn to group stimuli into categories, such as 'chair', 'table' and 'vehicle', which are critical for rapidly and appropriately selecting behavioural responses. Although much is known about the neural representation of simple visual stimulus features (for example, orientation, direction and colour), relatively little is known about how the brain learns and encodes the meaning of stimuli. We trained monkeys to classify 360 degrees of visual motion directions into two discrete categories, and compared neuronal activity in the lateral intraparietal (LIP) and middle temporal (MT) areas, two interconnected brain regions known to be involved in visual motion processing. Here we show that neurons in LIP--an area known to be centrally involved in visuo-spatial attention, motor planning and decision-making-robustly reflect the category of motion direction as a result of learning. The activity of LIP neurons encoded directions of motion according to their category membership, and that encoding shifted after the monkeys were retrained to group the same stimuli into two new categories. In contrast, neurons in area MT were strongly direction selective but carried little, if any, explicit category information. This indicates that LIP might be an important nexus for the transformation of visual direction selectivity to more abstract representations that encode the behavioural relevance, or meaning, of stimuli.  相似文献   

18.
19.
Sensory neuroscience seeks to understand how the brain encodes natural environments. However, neural coding has largely been studied using simplified stimuli. In order to assess whether the brain's coding strategy depends on the stimulus ensemble, we apply a new information-theoretic method that allows unbiased calculation of neural filters (receptive fields) from responses to natural scenes or other complex signals with strong multipoint correlations. In the cat primary visual cortex we compare responses to natural inputs with those to noise inputs matched for luminance and contrast. We find that neural filters adaptively change with the input ensemble so as to increase the information carried by the neural response about the filtered stimulus. Adaptation affects the spatial frequency composition of the filter, enhancing sensitivity to under-represented frequencies in agreement with optimal encoding arguments. Adaptation occurs over 40 s to many minutes, longer than most previously reported forms of adaptation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号