首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
p53-related protein kinase (PRPK), the human homologue of yeast Bud32, belonging to a small subfamily of atypical protein kinases, is inactive unless it is previously incubated with cell lysates. Here we show that such an activation of PRPK is mediated by another kinase, Akt/PKB, which phosphorylates PRPK at Ser250. We show that recombinant PRPK is phosphorylated in vitro by Akt and its phospho-form is recognized by a Ser250-phospho-specific antibody; that cell co-transfection with Akt along with wild-type PRPK, but not with its Ser250Ala mutant, results in increased PRPK phosphorylation; and that the phosphorylation of p53 at Ser15, the only known substrate of PRPK, is markedly increased by co-transfection of Akt with wild-type PRPK, but not PRPK dead mutant, and is abrogated by cell treatment with the Akt pathway inhibitor LY294002. Our data disclose an unanticipated mechanism by which PRPK can be activated and provide a functional link between this enigmatic kinase and the Akt signaling pathway.  相似文献   

2.
3.
T-cell signal transduction and the role of protein kinase C   总被引:3,自引:0,他引:3  
The T lymphocyte has a vital part to play in maintaining the host response to bacterial and viral infection and also appears to play a key pathological role in autoimmune diseases such as rheumatoid arthritis. In this review, we summarize the signalling pathways which trigger antigen-driven T-cell proliferation and examine the evidence which suggests that protein kinase C (PKC) is fundamental to this process. Finally, we discuss the therapeutic potential that PKC inhibitors may have in the treatment of autoimmune disease. Received 31 March 1998; received after revision 19 May 1998; accepted 19 May 1998  相似文献   

4.
A cytosolic 23kDa protein was initially puified from bovine brain and shown to bind phosphatidylethanolamine. Later, it was also characterized in rat and human brain, and it is now known to be widespread, having been found in numerous tisues in several species. Here, we report the high level of mRNA and phosphatidyl ethanolamine binding protein expression in rat testis and to a lesser extent mouse testis. In human testis, although it was not detectable by Northern blot analysis, the mRNA was shown be present when PCR amplificatin was performed. Immunohistochemical experiments revealed that the testicular phosphatidylethanolamine binding protein (tPBP) is principally expressed in the elongated spermatids of both rat and mouse testis. This finding, and the association of tPBP with cellular membranes, suggest its possible implication in membrane remodelling during spermatid maturation.  相似文献   

5.
Detection of stereotypic hallmarks of apoptosis during cell death induced by menadione, including DNA laddering and the formation of apoptotic bodies, is reported. Comet assay and the TdT-mediated dUTP nick end labelling (TUNEL) procedure were also performed to detect DNA fragmentation. Inhibition of DNA fragmentation by Ac-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) and phenylmethylsulfosyl (PMSF) implicated the involvement of caspase-like proteases in menadione-induced apoptosis in plants. We further studied the cleavage of lamin-like proteins during apoptosis in menadione-treated tobacco protoplasts. In animals, it has been reported that the solubilization of nuclear lamina and lamin degradation occurs during apoptotic cell death. However, little is known about the fate of lamins in apoptotic plant cells. Our study provided evidence that lamin-like proteins degraded into 35-kDa fragments in tobacco protoplasts induced by menadione, and this preceded DNA fragmentation. The results thus indicated that proteolytic cleavage of nuclear lamins was also conserved in programmed cell death in plants. Received 16 November 1998; received after revision 21 December 1998; accepted 23 December 1998  相似文献   

6.
7.
8.
Numerous proteins are involved in the nucleotide excision repair (NER) and DNA mismatch repair (MMR) pathways. The function and specificity of these proteins during the mitotic cell cycle has been actively investigated, in large part due to the involvement of these systems in human diseases. In contrast, comparatively little is known about their functioning during meiosis. At least three repair pathways operate during meiosis in the yeast Saccharomyces cerevisiae to repair mismatches that occur as a consequence of heteroduplex formation in recombination. The first pathway is similar to the one acting during postreplicative mismatch repair in mitotically dividing cells, while two pathways are responsible for the repair of large loops during meiosis, using proteins from MMR and NER systems. Some MMR proteins also help prevent recombination between diverged sequences during meiosis, and act late in recombination to affect the resolution of crossovers. This review will discuss the current status of DNA mismatch repair and nucleotide excision repair proteins during meiosis, especially in the yeast S. cerevisiae. Received 21 September 1998; received after revision 23 November 1998; accepted 23 November 1998  相似文献   

9.
In the present paper we report examination of stereotypic hallmarks of apoptosis in heat-treated tobacco cells. Hyperthermia (44 °C, 4 h) caused apoptosis in 53.6% of cells when assayed 24 h after heat treatment. The induction of apoptosis by heat treatment was confirmed by flow cytometric assay. Cytological observations revealed condensation of the cytoplasm and nucleus, as well as nuclear collapse. DNA ladders were observed in DNA extracted from heat-treated cells, whereas DNA from control cells remained undegraded. The terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay revealed that 51.8% of the heat-treated cells (44 °C, 4 h) show positive reaction after a 24-h recovery. When cells were cultured in a medium supplemented with 0.4–5.0 mM ZnSO4, internucleosomal DNA fragmentation induced by heat shock was completely negated. Strikingly, when cells were cultured in Ca2+ and/or Mg2+ free medium for 44 h followed by heat treatment, DNA laddering was not observed. The results suggest hyperthermia-induced apoptosis and a correlation between the regula tion of endonucleases and heat shock signal in apoptotic tobacco cells. Received 17 September 1998; received after revision 4 January 1999; accepted 4 January 1999  相似文献   

10.
Mitochondrial cytochrome b (cyt b) from 25 out of 31 extant goldfinches, siskins, greenfinches and redpolls (genus Carduelis) has been sequenced from living samples taken around the world, specimens have also been photographed. Phylogenetic analysis consistently gave the same groups of birds, and this grouping was generally related to geographical proximity. It has been supposed that Pleistocene glaciations played a crucial role in the origin of extant diversity and distribution of Northern Hemisphere vertebrates. Molecular comparison of most extant songbird species belonging to the genus Carduelis does not support this assertion. The fossil record of chicken and pheasant divergence time has been used to calibrate the molecular clock; cyt b DNA dendrograms suggest that speciation in Carduelinae birds occurred during the Miocene and Pliocene Epochs (9 – 2 million years ago) in both the Northern and Southern Hemispheres. Only about 4% average amount of nucleotide substitution per lineage is found between the most distant Carduelis species; this suggests a remarkably rapid radiation when compared with the radiation of other passerine songbird genera. In addition, a continuum of small songbird speciation may be found during the Miocene Epoch in parallel with speciation of other orders (i.e. Galliformes, chicken/pheasant). Pleistocene glaciations may have been important in subspeciation (i.e. Eastern European grey-headed goldfinches/Western European black-headed goldfinches) and also in ice-induced vicariance (isolation) (i.e. siskin in Western Europe vs. siskin in Far East Asia) around the world. European isolated Serinus citrinella (citril finch) is not a canary, but a true goldfinch. South American siskins have quickly radiated in the last 4 million years coinciding with the emergence of the Isthmus of Panama; probably, a North American siskin related to C. notata invaded a suitable and varied biotope (the South American island) for Carduelis birds. North American goldfinches may be renamed as siskins, because they have a distant genetic relationship with European goldfinches. Genus Acanthis could be dropped, and thus redpolls should be separated from twite and linnet, the latter (Europeans) probably being related to American goldfinches. Also, reproductive barriers are observed between closely related species and not between other more distant ones. Finally, a tentative classification for genus Carduelis species is suggested. Received 6 March 1998; received after revision 3 July 1998; accepted 7 July 1998  相似文献   

11.
Signalling via the protein kinase Raf-MEK-ERK pathway is of major importance for transformation by oncogenes. To identify genes affected by inhibition of this pathway, c-JUN transformed rat fibroblasts were treated with a MEK1 inhibitor (PD98059) and subjected to two-dimensional gel electrophoresis after cell lysis. Gene products with expression influenced by MEK1 inhibition were determined by mass spectrometry of fragments from in-gel tryptic digestions. The expression of pirin, a nuclear factor I-interacting protein, was lowered after inhibition of MEK1. Western blot analysis revealed increased expression of pirin in RAS and c-JUN transformed cells in the absence of PD98059. Inhibition of MEK1 also led to reduced expression of α-enolase, phosphoglycerate kinase, elongation factor 2 and heterogeneous nuclear ribonucleoprotein A3, the latter two being detected as truncated proteins. In contrast, the level of ornithine aminotransferase was increased. We conclude that inhibition of MEK1 results in major alterations of protein expression in c-JUN transformed cells, suggesting that this pathway is important for oncogene-induced phenotypic changes. Received 30 December 1998; accepted 12 January 1999  相似文献   

12.
Incubation of kaempferol-3-O-β-D-(6"-E-p-coumaroyl)-glucopyranoside (tiliroside) (1) with Aspergillus nidulans gives the 7-methyl ether of tiliroside (2) which is a new compound. Its structure is determined by spectroscopic methods. Cytotoxic studies of 2 and of its acetylated derivative 2a were carried out in vitro against fourteen human leukemic cell lines. Results clearly show that compound 2 is ineffective against all leukemic cell lines tested. On the contrary, compound 2a exhibited cytotoxic activity against four of the cell lines (HL60, DAUDI, HUT78 and MOLT3) and additionally, a dose- and time-dependent effect on DNA synthesis. Received 18 February 1997; received after revision 8 April 1997; accepted 6 May 1997  相似文献   

13.
The RAG1 and RAG2 proteins play a crucial role in V(D)J recombination by cooperating to make specific double-stranded DNA breaks at a pair of recombination signal sequences (RSSs). However, the exact function they perform has heretofore remained elusive. Using a combination of sensitive methods of sequence analysis, we show here that the active core region of the RAG2 protein, confined to the first three quarters of its sequence, is in fact composed of a six-fold repeat of a 50-residue motif which is related to the kelch/mipp motif. This motif, which forms a four-stranded twisted antiparallel β sheet, is arranged in a circular formation like blades of a propeller or turbine. Given the known properties of the β-propeller fold in mediating protein-protein interactions, it is proposed that this six-laded propeller structure of the RAG2 active core would play a crucial role in the tight complex formed by the RAG1 and RAG2 proteins and RSSs. Moreover, the presence of a plant homeodomain finger-like motif in the last quarter of the RAG2 sequence suggests a potential interaction of this domain with chromatin components. Received 6 June 1998; accepted 9 June 1998  相似文献   

14.
Peptide aptamers have emerged as powerful new tools for molecular medicine. They can specifically bind to and functionally inactivate a given target molecule under intracellular conditions. Typically, peptide aptamers are generated by screening a randomized peptide expression library, displayed from the Escherichia coli thioredoxin A (TrxA) protein. Here, we transferred peptide moieties from defined TrxA-based peptide aptamers to alternative scaffold proteins, such as the green fluorescent protein and staphylococcal nuclease. Yeast and mammalian two-hybrid assays as well as in vitro binding analyses show that the TrxA scaffold can be a major determinant for the binding of peptide aptamers. In addition, we demonstrate that TrxA can correctly display peptide sequences that correspond to the binding domains of natural interaction partners. Therefore, sequence analyses of TrxA-based peptide aptamers, isolated by two-hybrid screening from randomized expression libraries, should also be useful to find cellular binding partners for a given target protein, by homology. Received 1 August 2002; received after revision 17 September 2002; accepted 19 September 2002 RID="*" ID="*"Corresponding author.  相似文献   

15.
During the 1950s, linear and multichain poly-α-amino acids were synthesized by polymerization of the corresponding N-carboxyamino acid anhydrides in solution in the presence of suitable catalysts. The resulting homo- and heteropolymers have since been widely employed as simple protein models. Under appropriate conditions, poly-α-amino acids, in the solid state and in solution, were found to acquire conformations of an α-helix and of β-parallel and antiparallel pleated sheets, or to exist as random coils. Their use in experimental and theoretical investigations of helix-coil transitions helped to shed new light on the mechanisms involved in protein denaturation. Conformational fluctuations of peptides in solution were analysed theoretically and studied experimentally by nonradiative energy-transfer techniques. Poly-α-amino acids played an important role in the deciphering of the genetic code. In addition, analysis of the antigenicity of poly-α-amino acids led to the elucidation of the factors determining the antigenicity of proteins and peptides. The synthetic procedures developed made possible the preparation of immobilized enzymes which were shown to be of considerable use as heterogeneous biocatalysts in the chemical and pharmaceutical industry. Interest in the biological and physicochemical characteristics of poly-α-amino acids was recently renewed because of the reported novel findings that some copolymers of amino acids are effective as drugs in multiple sclerosis, and that glutamine repeats and reiteration of other amino acids occur in inherited neurodegenerative diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号