首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
DNA计算机的概念和主要特点 利用特定的DNA结构--DNA核酶可以构建各种DNA分子逻辑门,这为DNA计算机的发展奠定了基础.DNA计算是计算机科学和分子生物学相结合而发展起来的新兴研究领域.而DNA计算机是一种生物形式的计算机.它是利NDNA(脱氧核糖核酸)建立的一种完整的信息技术形式,以编码的DNA序列(通常意义上计算机内存)为运算对象,  相似文献   

2.
针对已有的图像匹配算法都是在小规模基础上的统计识别方法,均是串行运算,对样本的训练和目标识别都须进行大量复杂的运算,难以适应大规模图像比对的问题,利用DNA计算强大的并行性,提出了一种基于DNA计算的图像模板匹配算法.首先,将二进制的图像信号编码为满足一系列约束并允许一定非特异性杂交的DNA序列;然后,通过DNA退火反应得到匹配问题的解;最后,利用这一算法得出的128个单链DNA编码进行了数字图像模板匹配的仿真实验.仿真结果表明DNA计算应用于大规模图像匹配问题是可行的.  相似文献   

3.
针对计算机的弊病〖CD2〗运算的不可逆性, 提出了一种新构想: 将生物计算机、 纳米计算机和传统计算机的实现原理以及结构特点有机地结合,设想了一种仿真生物纳米计算器的新逻辑, 以实现运算的可逆性. 基本实现思想如下: 用硬件模拟的DNA(脱氧核糖核酸)反义链作为信息载体, 遵循基因控制蛋白质合成的中心法则, 对应可以形成多种进制(例如: 二进制、 四进制、 八进制、 十六进制以及六十四进制)逻辑规则, 并利用遗传学原理进行可逆性运算.  相似文献   

4.
利用DNA自组装执行计算的思想已从实验上被证明了其可行性.已有多种理论模型被提出用以解决各种NP问题.基于DNA Tile自组装模型理论在二维下的扩展,本文设计了可以实现这一算法的三维DNA Tile组装系统,提出了一种用于解决多维背包问题的三维DNA自组装模型.该模型可以非确定性的输出可行性解决方案.分析表明系统可以在线性组装步骤内完成计算,所需的Tile种类数与问题维数无关.为探索三维DNA自组装的计算能力进行了一次有意义的尝试.  相似文献   

5.
研究了DNA序列高维空间数字编码的更一般的运算法则:充分利用陈惟昌等人提出的DNA序列高维空间的表观维数Nv,数值维数Nx以及差异维数Nd,讨论了当Nd=0,1,2,2n或2n+1(n=0,1,2,…)时,具体刻画了DNA序列的首段碱基及其数值取值范围;推导出DNA序列多点突变(单核苷酸多态性SNP)的运算法则;利用DNA序列的定值部Xi和定位部Qi及其计算公式,从新的角度导出DNA重复序列的编码法则和运算法则.  相似文献   

6.
DNA芯片技术是近年来生命科学与信息科学的新兴研究领域,其突出特点在于它的高度并行性、多样化、微型化以及自动化.最短公共超串问题是计算机科学中的NP-完全问题.笔者在DNA计算和DNA芯片基础上,提出了基于DNA芯片解决最短公共超串问题的DNA计算新模型.该模型可对信息高度并行获取,并且具有操作易自动化的优点.  相似文献   

7.
DNA芯片技术是近年来生命科学与信息科学的新兴研究领域,其突出特点在于它的高度并行性、多样化、微型化以及自动化,最短公共超串问题是计算机科学中的NP-完全问题.笔者在DNA计算和DNA芯片基础上,提出了基于DNA芯片解决最短公共超串问题的DNA计算新模型.该模型可对信息高度并行获取,并且具有操作易自动化的优点.  相似文献   

8.
DNA计算在电路设计中的应用   总被引:2,自引:1,他引:1  
讨论了DNA计算的机理,给出了DNA计算的基本生化实验.对电路布线问题,提出了DNA算法,即首先对导线的顺序进行DNA编码,其次通过杂交反应产生所有可行解,最后通过电泳实验得到最优解.对所得结果进行检测时采用了DNA芯片和分子信标技术,对探针进行生物素标记解读出最优解.该算法的核心运算是杂交反应,算法总的操作次数为n 3,其中n为电路布线问题的规模.最后,通过6对接线柱的例子说明了DNA算法的有效性和正确性.  相似文献   

9.
介绍了基于交流阻抗技术构建非标记型脱氧核糖核酸(DNA)杂交传感器的方法.以24个碱基长度的寡聚DNA作为实验对象,将5′端巯基化的单链寡聚DNA(SH-ssDNA)探针与巯基乙酸(RSH)同时自组装到金电极表面,形成杂交识别层,利用交流阻抗技术测量出杂交前后金电极表面电子传递电阻Ret的增量作为杂交信号.实验中对DNA探针的自组装时间、杂交温度、杂交时间和阻抗测量液等实验条件进行了观察和优化;通过选择自组装液中SH-ssDNA探针和RSH的浓度,减少DNA在金电极表面的非特异性吸附,同时保证金电极表面自组装的SH-ssDNA探针有合适的疏密度,提高了杂交效率.在各优化条件下,无需扩增杂交信号,此非标记型DNA杂交传感器的检测下限为3.0×10-14mol/L;和完全互补序列相比,一个和三个碱基错配序列分别产生55.6%和1.3%的杂交信号.  相似文献   

10.
DNA芯片技术已经被越来越广泛地应用在生命科学研究的各个领域中,并在最初cDNA芯片和寡核苷酸芯片的基础上,开发出了基于磁珠和微流控等新型芯片技术,大大提高了芯片检测和灵敏度,并扩大了芯片的使用范围。本书主要介绍了不同类型的DNA芯片的工作原理、适用范围和一些相关的数据分析方法。  相似文献   

11.
作为自组装DNA计算领域中一门新技术,DNA链置换反应在分子计算领域得到了广泛的应用.基于自组装DNA计算原理,设计了对应不同逻辑门的DNA分子电路.基于DNA链置换反应机理构建了编码器逻辑电路的分子计算模型.当输入DNA分子信号链时,将不同分子浓度比的DNA分子逻辑门电路混合,借助分子间的特异性杂交反应及分子间链置换反应,最终可输出信号链分子.Visual DSD仿真结果表明了本文设计的编码器逻辑计算模型的可行性与准确性.为拓展分子逻辑电路的应用做出有益的探索.  相似文献   

12.
Sticker DNA computer model ——Part Ⅰ: Theory   总被引:5,自引:0,他引:5  
DNAcomputationisanewcomputationalpatternusingDNAmoleculesandsomeenzymesforessentialmaterials,whichisbasedonsomebiochemicalreactions.ThiscomputationalmethodwasfirstlyproposedbyDr.Adlemanin1994[1].ItsprominentadvantageismakingthebestofDNAmoleculeswithenormousmemorygeneticcodes,andimmenseparallelismofbiochemicalreactions.Asaresult,DNAcomputersbasedontheDNAcomputa-tionmodelwillhaveenormousmemorycapacityandegregiousoperationspeed.DNAcomputercanrunwithhighspeed,enormousinformationmemorycapab…  相似文献   

13.
In 1994, University of Southern California computer scientist, Dr. Leonard Adleman solved the Hamiltonian path problem using DNA as a computational mechanism. He proved the principle that DNA computing could be used to solve computationally complex problems. Because of the limitations in discovery time, resource requirements, and sequence mismatches, DNA computing has not yet become a commonly accepted practice. However, advancements are continually being discovered that are evolving the field of DNA computing. Practical applications of DNA are not restricted to computation alone. This research presents a novel approach in which DNA could be used as a means of storing files. Through the use of multiple sequence alignment combined with intelligent heu- ristics, the most probabilistic file contents can be determined with minimal errors.  相似文献   

14.
The postgenomic era has seen an emergence of new applications of DNA manipulation technologies, including DNA-based molecular computing. Surface DNA computing has already been reported in a number of studies that,however, all employ different mechanisms other than automaton functions. Here we describe a programmable DNA surface-computing device as a Turing machine-like finite automaton. The laboratory automaton is primarily composed of DNA (inputs, output-detectors, transition molecules as software), DNA manipulating enzymes and buffer system that solve artificial computational problems autonomously. When fluoresceins were labeled in the 5‘ end of (-) strand of the input molecule, direct observation of all reaction intermediates along the time scale was made so that the dynamic process of DNA computing could be conveniently visualized. The features of this study are: (i) achievement of finite automaton functions by linearly programmed DNA computer operated on magnetic particle surface and (ii)direct detection of all DNA computing intermediates by capiilary electrophoresis. Since DNA computing has the massive parallelism and feasibility for automation, this achievement sets a basis for large-scale implications of DNA computing for functional genomics in the near future.  相似文献   

15.
In 1994, University of Southern California computer scientist Dr. Leonard Adleman solved the Hamiltonian path problem using DNA as a computational mechanism. He proved the principle that DNA computing could be used to solve computationally complex problems. Because of the limitations in discovery time, resource requirements, and sequence mismatches, DNA computing has not yet become a commonly accepted practice. However, advancements are continually being discovered that are evolving the field of DNA computing. Practical applications of DNA are not restricted to computation alone. This research presents a novel approach in which DNA could be used as a means of storing files. Through the use of multiple sequence alignment combined with intelligent heuristics, the most probabilistic file contents can be determined with minimal errors.  相似文献   

16.
Sticker model is one of the basic models in the DNA computer models. This model is coded with single-double stranded DNA molecules. It has the following advantages that the operations require no strands extension and use no enzymes; What‘s more, the materials are reusable.Therefore it arouses attention and interest of scientists in many fields. In this paper, we will systematically analyze the theories and applications of the model, summarize other scientists‘ contributions in this field, and propose our research results. This paper is the theoretical portion of the sticker model on DNA computer, which includes the introduction of the basic model of sticker computing. Firstly, we systematically introduce the basic theories of classic models about sticker computing; Secondly, we discuss the sticker system which is an abstract computing model based on the sticker model and formal languages; Finally, extend and perfect the model, and present two types of models that are more extensive in the applications and more perfect in the theory than the past models: one is the so-called k-bit sticker model, the other is full-message sticker DNA computing model.  相似文献   

17.
概述了DNA计算的基本原理、DNA计算的应用和DNA计算机的研究进展及存在问题,基于DNA生化反应的计算机称为DNA计算机,由于其采用一种完全不同于传统计算机的运算逻辑与存贮方式,DNA计算机在解决某些复杂问题时具有传统计算机无法比拟的优势,目前国际上关于DNA计算和DNA分子生物计算机的研究方兴未艾,极大地推进了DNA计算机的研究过程。  相似文献   

18.
With the progress of DNA computing, DNA- based cryptography becomes an emerging interdisciplinary research field. In this paper, we present a novel DNA cryptography that takes advantage of DNA self assembled structure. Making use of the toehold strands recognition and strand displacement, the bit-wise exclusive-or (XOR) operation is carried out to fulfill the information encryption and decryption in the form of a one-time-pad. The security of this system mainly comes from the physical isolation and specificity of DNA molecules. The system is con- structed by using complex DNA self-assembly, in which technique of fluorescent detection is utilized to implement the signal processing. In the proposed DNA cryptography, the XOR operation at each bit is carried out individually, thus the encryption and decryption process could be con- ducted in a massive, parallel way. This work may dem- onstrate that DNA cryptography has the great potential applications in the field of inRwmation security.  相似文献   

19.
DNA计算是一种基于生化反应机理的新型信息处理模式,与基于图灵机思想的电子计算机原理截然不同。近年来,DNA分子生物计算理论、实验技术的快速发展为DNA计算机的实现技术提供了一种新的理论和手段。文章首次尝试了DNA计算在逻辑演算中的应用,拓宽了DNA计算的应用领域。模型的最大优点是反应物可以在溶液中充分混合接触而进行生化反应,充分体现了DNA计算巨大并行性的优点,另外编码数和操作数都是线性增加的。  相似文献   

20.
DNA计算是计算科学和分子生物学相结合的新领域。目前关于DNA计算的研究主要是抽象的计算模型和简单的原理性试验。DNA剪接计算模型是以生物DNA分子重组技术为基础的文法系统。本文主要介绍DNA剪接计算模型的文法结构及计算方法,证明了DNA剪接模型可以计算所有图灵机可计算函数。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号