首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
设X为任意非空集,E是X上的等价关系,PX表示集合X上的部分变换半群.IX={α∈PX:(x,y)∈domα,xα=yαx=y},且IX做成PX的一个子半群,称为对称逆半群.定义IE(X)={α∈IX:x,y∈domα,(x,y)∈E(xα,yα)∈E}.显然IE(X)关于部分变换的乘积(作为半群运算)生成一个半群,称为保持等价关系E的部分一一变换半群,它是IX的一个子半群.本文对IE(X)上的Green关系给出了完整的刻画.  相似文献   

2.
设T_X是非空集合X上全变换半群,E是X上等价关系,则T_?(X)={f∈T_X:?_x,y∈X,(f(x),f(y))∈E?(x,y)∈E}是T_X的反射等价关系的子半群.取定θ∈T_?(X),在T_?(X)上定义新的运算°为f°g=fθg,其中fθg表示一般意义上映射f、θ、g的复合.关于这个运算°,T_?(X)成为夹心变换半群T_?(X;θ).本文刻画了它的正则元,给出了T_?(X;θ)是正则半群的充要条件.  相似文献   

3.
设(X,≤)是全序集,T(X)是X上的全变换半群,E为X上的任意的非平凡等价关系,设E*O(X)={α∈T(X):x,y∈X,(x,y)∈E,x≤y(xα,yα)∈E,xα≤yα}则E*O(X)是T(X)的子半群;当X是有限和E是凸时,研究了E*O(X)的Green关系,并证明了它是正则子半群.  相似文献   

4.
设X为非空集合,PX为X上的部分变换半群,设E为X上的一个等价关系,R为商集X/E的横断面(即在每个等价类中取一个元素所组成的集合).对于每个x∈dom f,记rx为R中的元素,满足(x,rx)∈E.定义PE(X,R)={f∈PX:(∨)x,y∈dom f,(x,y)∈E(→)(f(x),f(y))∈E,(∨)x∈dom f(→)rx∈dom f,f(rx)∈R}.则PE(X,R)作成PX的子半群.本文主要讨论PE(X,R)的Green关系.  相似文献   

5.
设TX是非空集合X上全变换半群,E是X上非平凡的等价关系,R是X/E的横断面,则TE(X,R)={f∈TX:x,y∈X,(x,y)∈E(f(x),f(y))∈E且f(R)R}是TX的子半群.本文赋予半群TE(X,R)自然偏序关系,通过构造映射的方法,刻画它的左相容元,给出充要条件.  相似文献   

6.
一个变换半群的同余(英文)   总被引:1,自引:1,他引:0  
设X是一个集合,|X|>3,TX为集合X上的全变换半群.设E为X上的一个等价关系,TE(X)={f∈TX:(x,y)∈E■(f(x),f(y))∈E}为由等价关系E决定的TX的一个子半群.记T2(X)={f∈TE(X):|f(X)|≤2}∪{id},这里id表示X上的恒等映射,则T2(X)是TE(X)的一个子半群.另外还描述了半群T2(X)上的几个同余.  相似文献   

7.
一类部分变换半群的Green关系   总被引:1,自引:0,他引:1  
X为任意集且|X|≥5,E是X上的双等价关系,即E=(A×A)∪(B×B)∪Δ(X)其中A,B是X的真子集且|A|>1,|B|>1,Δ(X)={(x,x):x∈X}.PX表示集合X上的部分变换半群,令PE(X)={f∈PX:(a,b)∈E且a,b∈domf,(f(a),f(b))∈E},那么PE(X)是PX上的一个子半群.刻划了PE(X)的G reen关系.  相似文献   

8.
设POn是[n]上的部分保序变换半群.对任意1≤k≤n-1且2≤m≤n,研究半群POn(k,m)={α∈POn:x,y∈dom(α),x≤k■xα≤k,y≥m■yα≥m}证明了半群POn(k,m)的幂等元秩为3n-4.进一步,得到了半群POn(k,k+1)的秩为2n-2,且半群POn(k,m)(m≠k+1)的秩为2n-1.  相似文献   

9.
令Tn为有限集X n={1,2,?,n}上的全变换半群.研究子半群Cn={α∈Tn|(A)x,y∈Xn,x≤y(→)xα≤yα且xα≤x}.特别得到Cn的每一个G reen关系都是恒等关系,且每一个正则元都是幂等元;进一步Cn的每一个L*类和每一个R*类都仅含唯一个幂等元,但不是L*-幂单的和R*-幂单的.  相似文献   

10.
保持两个等价关系的夹心半群的格林关系和正则性   总被引:3,自引:2,他引:1  
设X,Y为非空集合,E,F分别为X,Y上的等价关系.称映射f:X→Y是EF-保持的,如果对任意x,y∈X,(x,y)∈E蕴涵(f(x),f(y))∈F.设T(XE,YF,θ)表示所有EF-保持的映射的集合,θ:Y→X是一个FE-保持的映射,对任意f,g∈T(XE,YF;θ),定义fog=fθg,则T(XE,YF;θ)在运算"o"下构成一个半群,称为保持等价关系EF的夹心半群,θ称为夹心映射.本文讨论了保持等价关系EF的夹心半群T(XE,YF;θ)上的格林关系以及正则元的特征.  相似文献   

11.
设ρ是有限非空集X上的一个凸等价关系,R是商集X/ρ的一个横截集.对X上的保序全变换半群O(X)的子半群O(X,ρ,R)={α∈O(X)|RαR且(x,y)∈ρ(xα,yα)∈ρ},在此证明了O(X,ρ,R)是O(X)的以幂等元为中心的子半群,并且刻划出它的格林关系.  相似文献   

12.
设X为一非空集合,T(X)为X上的变换半群,E为X上的一个等价关系,给出如下两个集合:Tx0(X)={α∈T(X):x0α=x0},Tx0SE(X)={α∈Tx0(X):x∈X,(x,xα)∈E}。证明了Tx0SE(X)为一正则半群,同时还讨论了Tx0SE(X)上的自然偏序结构及其左右相容性。  相似文献   

13.
令Tn为Xn={1,2,…,n}上的全变换半群,且令On={α∈Tn?x,y∈Xn,x≤y?xα≤yα}为Tn的保序全变换子半群,从而得到了直积Om×On上的自同构.  相似文献   

14.
一类变换半群的秩   总被引:1,自引:1,他引:1  
设Tx为集合X上的全变换半群,E是X上一个等价关系.令TE(X)={f∈TX;↓A(x,y)∈E(f,x),f(y))∈E},则TE(X)是Tx的一个子半群.本文讨论对于一个较为特殊的情况,即E只有两个等价类,且每个等价类有n(n≥3)个点.结果发现,这时TE(X)有一组生成元,含有5个元素,从而确定了TE(X)的秩不超过5.  相似文献   

15.
一类保等价关系部分变换半群的Green关系和正则性   总被引:1,自引:0,他引:1  
设X为任意集合且X≥3,PX为集合X上的部分变换半群,对于X上的非平凡等价关系E,令PE(X)={f∈PX:(a,b)∈E,(f(a),f(b))∈E},那么PE(X)是PX的一个子半群.从较特殊的情况出发,考虑E为X上的单等价关系,即E=(A×A)∪Δ(X)其中A是X的真子集且A>1,Δ(X)=(x,x):x∈X.给出了PE(X)的正则元的充分必要条件及PE(X)的正则性,刻划了PE(X)的Green关系及PE(X)的正则元之间的Green关系.  相似文献   

16.
令Tn为有限集Xn={1,2,…,n}上的全变换半群.本文刻画了子半群Cn={α∈Tn|?x,y∈Xn,x≤y?xα≤yα且xα≤x}上秩2的所有自同态,并得到Cn的秩2的所有自同态的个数.  相似文献   

17.
设X为非空集合,|X|>3,TX是X上的全变换半群.设E是X上的一个等价关系,TE(X)是由等价关系E所决定的TX的子半群,满足(x,y)∈E,(f(x),f(y))∈E.记T2(X)是TE(X)的一个子半群,满足f∈T2(X),|f(X)|≤2.讨论了半群T2(X)上的格林关系和正则元.  相似文献   

18.
令Tn为Xn={1,2,?,n}上的全变换半群,且令On={α∈Tn|橙x,y∈Xn,x≤y痴xα≤yα}为Tn的保序全变换子半群,文章将刻画直积Om×On上的主同余.  相似文献   

19.
设POn是[n]上的部分保序变换半群.考虑半群POn(k)={α∈POn:?x∈dom(α),x≤k?xα≤k},其中1≤ k≤n-1.证明了半群POn(k)是由秩为n-1的幂等元生成的,且它的幂等元秩和秩分别为3n-3和2n-1  相似文献   

20.
TE(X)的变种半群TE(X;θ)的若干性质   总被引:2,自引:0,他引:2  
设X是一个非空集合,E是X上的等价关系,TE(X)={f∈JX2↓A(a,b)∈E,(f(a),f(b))∈E).对于半群S中的一个取定元素θ∈S,重新定义S上的运算。为f。g=fθg,其中等式右边表示原来的运算,S关于这个新的运算所成的半群称为S的变种半群.本文讨论了TE(X;θ)的Green关系和Symons同余之间的联系.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号