共查询到20条相似文献,搜索用时 0 毫秒
1.
线性模型是数理统计中最重要的模型之一。在样本容量确定和误差服从独立的正态分布的条件下,该模型的误差方差的最小二乘法估计具有周知的良好性。但在误差不一定服从正态分布时,迄今为止对这种估计的性质知道不多。1966年Gleser在样本容量无限和误差服从独立同分布的条件下获得了关于这种估计的重要结果。本文的结果则是在误差分布不一定相同这一更广泛的情况下给出的。 相似文献
2.
考虑通常的线性模型Y_i=X'_iβ+e_i,i=1,2,…,未知参数向量β为p维的,关于{e_}讨论最多的有下面两种情况: 相似文献
3.
4.
考虑通常的线性模型y_i=x_i′β+e_i,i=1,2,…,n,…,(1)此处{x_i}是试验点列,是一串已知的p维向量,β为未知的p维回归系数向量,{e_i}为随机误差序列,满足条件 相似文献
5.
考虑线性模型Y_1=x_i~′β e_i,i=1,2,…,其中i=1,2,…为已知的试验点列,β=(β_1,…,β_r)′为未知参数,ei,i=1,2,…为随机误差序列。由前n次试验结果算出β的最小二乘估计: 相似文献
6.
考虑线性模型如下: y_i=x′_iβ+e_i,i=1,2,…,(1.1) 其中x′_i=(x_(i1),x_(i2),…,x_(ip))是已知常值向量,β′=(β_1,…,β_p)为未知参数向量,e_i为随机误差。记设计矩阵X_n=(x_1,x_2,…,x_n)′;Y_n=(y_1,y_2,…,y_n)′;S_n~(-1)=(X′_sX_n)~(-1)(S_(ij)~((n)))_(1≤i,j≤n)并且假定当n充分大时S_n满秩,则熟知β的最小二乘(LS)估计(n)有如下表达式: 相似文献
7.
(?)≡(x_1,x_2,…)是已知的p维向量序列,e≡(e_1,e_2,…)是随机误差列,β≡(β_1,…,β_i)′是未知的回归系数向量.记S_n=x_1x_1~′…+x_nx_n~′.设当n≥n_0时,S_1~(-1)存在.把p×n矩阵S_n~(-1)(x_1…x_n)的(j,i)元记为u_(nji),则β的最小二乘(LS)估计为 相似文献
8.
令(X,Y),(X_1,Y_1),…,(X_n,Y_n)为取值R~d×R的i.i.d随机向量,对某个p>2,E(|Y|~p)<∞。我们用x及(X_1,Y_1),…(X_n,Y_n)的函数m_n(x)来估计回归函数m(x)=E(Y|X=x)。m(x)的一类非参数核估计定义为 相似文献
9.
回归函数之改良近邻估计的强相合性 总被引:1,自引:0,他引:1
设(X,Y),(X_1,Y_1),…,(X_n,Y_n)为一串iid.d×1维随机向量,E|y|<∞。为估计m(x)=E(Y|X=x),对固定的x∈R~d,将(X_1,Y_1),…,(X_n,Y_n)按照 相似文献
10.
多元回归系数线性估计的可容许性 总被引:10,自引:0,他引:10
其中X是已知矩阵;(?)和σ~2>0是未知参数;V>0是已知矩阵。简记上述模型为H。 损失函数取为:(d—S(?))’(d-S(?))。在线性模型下(m=1),此时风险函数是实函数,因此,有关风险大小的比较就自然地按数的大小来进行,而在多元线性模型下,这时的风险 相似文献
11.
12.
考虑回归模型 y_i-x_iβ+g(t_i)+σ_ie_(is)i-1,2…,n, (1) 其中σ_i~2-f(u_i)>0,(x_i,t_i,u_i)是固定非随机设计点列,β是未知待估参数,g(·)和 相似文献
13.
考虑多元线性回归模型,其中(?)为p维随机向量.y=(?) ε对来自(y,(?))的样本(y_1,(?)_1~τ),…,(y_n,(?)_n~τ),类似的回归关系如下:y=(?) ε_t,t=1,…,n. 相似文献
14.
回归函数递归核估计相合的充要条件 总被引:1,自引:0,他引:1
设(X_1,Y_1),(X_2,Y_2),……为(X,Y)的样本,(X,Y)在R~d×R中取值,μ为X的概率分布,m(x)=E(Y|X=x)的核估计,递归核估计分别为 相似文献
15.
这里仅介绍若干主要结果,详细证明另文发表。设有线性模型,这里X为已知的n×p矩阵(n≥p),8_1,…,8_n相互独立,此处β∈R~p,0<σ~2<∞。这个模型及有关假定,以下将简记为H。 相似文献
16.
考虑多元回归模型此处x_(ij)是已知常数,β_1,…,β_p是未知参数,y_i,e_i分别为第i次量测值和量测随机误差。以下,我们记设计矩阵(x_(ij))_(1≤i≤n,1≤j≤p)为X_n,并令Y_n=(y_1,…,y_n)′),β=(β_1,…β_p)′。β的基于前n次量测值Y_n及设计矩阵X_n的最小二乘估计b_n=(b_(n1),…,b_(np))′为 相似文献
17.
先说明本文将使用的记号。以б(f)记亚纯函数f(z)的增长级,λ(f)和(?)(f)分别记f(z)的零点(计及重数)和不同零点(不计及重数)收敛指数。其他函数论记号是标准的,例如见文献[1]和[2]。 1983年,Bank等用Hayman不等式证明:设k=2,A(z)是超越整函数,满足(?)(A)<б(A)。则方程 的任一解f(?)0均有λ(f)≥б(A)。同年,Bank等人又证明:设k≥3,A(z)同前,但满足λ(A)<б(A)。则方程(1)的任一解f(?)0均有λ(f)≥б(A)。对于k≥3,如果A(z)同前,但仅满足(?)(A)<б(A),是否仍有同样结论?这一直是个未决问题。本文采用组合优势条件在更广的条件下作为一个结果的推论解决这一问题。 相似文献
18.
指数型三分性是线性微分系统的重要性质,文[1]中得到了关于它的一些重要结论,但没有给出指数型三分性关于小摄动是否不变的结论,更没有给出具体的粗糙度估计,为此我们给出如下结论。 相似文献
19.
泛优良性和均值矩阵线性估计的泛容许性 总被引:6,自引:0,他引:6
本文仅以多元线性模型: 中均值参数矩阵的可估函数的估计为例,来引入泛优良性概念,而一般情况下矩阵参数估计的泛优良性可仿此引入。上面的X,S,U≥0和V≥0(但V≠0)是已知矩阵;和σ~2>0是未知参数,ε是ε按行的拉直;UV是U与V的Kronecker乘积;μ(X′)是X′所张成的线性空间。 相似文献
20.
设有线性模型 这里V>0和X都已知,n≥p;β∈R~p,0<σ~2<∞均为未知参数。欲估计可估线性函数Sβ,此处S为已知的常数矩阵。1976年,Rao给出了在平方损失(d—Sβ)'(d—Sβ)下LY在线性估计类(?)={MY:M为常数矩阵}中是Sβ的可容许估计的充要条件。他还提出了矩阵 相似文献