首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
离子束医用材料改性   总被引:2,自引:1,他引:2  
给出了离子束提高改善生物材料的耐腐蚀和耐磨损的研究结果,也给出了改善生物材料生物相容性的方法和实验结果,并分析了利用离子束技术途径。  相似文献   

2.
3.
考虑瞬态的热传导过程,用有限差分方法计算了强流恒定离子束辐照过程的温度效应.由温升曲线的计算可知,对中等以上的注量率(>10~(13)cm~(-2)s~(-1))来说,快速注入过程都将是非稳态的,由此可知对强流离子束辐照过程进行瞬态热传导分析是必要的.若注量固定,晶片表面温度与离子能量的关系在低能部分(<100keV)很平缓,在高能部分很陡峭,在大注量注入情况下,降低靶座温度以抑制晶片表面温升是可行的方法之一.  相似文献   

4.
5.
6.
7.
离子束改性技术能够实现元素的掺杂、材料表面结构和形貌的调控,是一种清洁、高效的表面改性技术,并且已经成为表面物理研究中的独特技术.为了推动“双碳”目标的实现,北京大学技术物理系核技术应用团队将离子束改性技术与新能源材料、柔性光电材料和二维材料相结合,围绕高性能新能源材料的开发和结构改性机制开展了深入研究,提出全新的材料改性策略,取得了原创性成果.研究团队针对摩擦起电材料、催化材料、碳基材料和纳米多孔材料,通过离子束辐照精确调控材料的微观结构,大幅度提高其宏观性能,制备出高性能新能源材料和器件,并揭示其内在机制促进了新能源技术的发展,为新能源材料的制备提供了示范性工作,也为传统离子束技术应用开拓了新的领域.  相似文献   

8.
总结了武汉大学物理系加速器实验室近年来在离子束技术和薄膜功能材料研究方面的主要成果,包括;大型离子束及薄膜研究设备的建造和改进,非晶合金,高温超导,C60,β-C3N4等多种新型薄膜功能材料的离子束合成和材料改性研究。  相似文献   

9.
10.
11.
12.
重离子束生物学研究始于20世纪60年代,至今已经成为一门重要的交叉学科.与其他辐射相比,重离子束具有许多独特的优势,特别是它不仅有能量沉积效应,还有质量沉积效应,这使其更适于分子改性研究.重离子束分子改性可应用于新药及其先导化合物的研制、基因工程、蛋白质工程和太空放射生物学等研究领域.对研究动态进行了回顾和展望.  相似文献   

13.
聚合物材料的离子束表面改性及工程应用前景   总被引:2,自引:0,他引:2  
介绍了运用高能离子束对聚合物材料进行表面改性的新工艺。聚合物材料经高能离子注入后其电导率、表面硬度、耐磨性等性能都得到了提高。特别是其表面硬度远高于目前公认的最硬的马氏体钢,其耐磨性明显优于滚珠轴承钢。通过比较几种不同类型的聚合物材料在注入前后表面硬度的变化,分析注入离子种类、注入能量、注入剂量等工艺参数对聚合物的影响。利用交联网状结构模型分析聚合物强化机理,比较好地解释了上述性能改善的原因。并对这种新工艺的工程应用前景进行了探讨。  相似文献   

14.
用射频磁控溅射方法在Si/SiO2衬底上制备了(NiFeCo)36Ag64颗粒膜,用四探针法测量了法入Co离子前后(NiFeCo)36Ag64颗粒膜巨磁电阻效应的变化,用场发射扫描电镜分析了颗粒膜的形貌及成分,实验结果表明:注入Co离子对颗粒膜巨磁电阻有显著的影响,在相同退火温度下,注入离子可使GMR效应提高一倍以上,随着退火温度增加,颗粒膜巨磁电阻效应先增加而后减小,在360℃下退火可获得10.2%的最大室温巨磁电阻效应。  相似文献   

15.
16.
叙述了离子注入技术的特点,并着重介绍了其在高分子材料表面改性中的应用.综述了国内目前在这方面的研究现状及试验结果.  相似文献   

17.
利用透射电子显微镜研究了通过离子束交替混合获得的TiN涂层与基 体M2钢之间的过渡层的微观构造.结果表明:过渡层主要组成相为TiN、 M6C和α-Fe.TiN相呈颗粒状,内部具有层状亚结构;M6C在离子束作用 下发生碎化;α-Fe有多晶化趋势.  相似文献   

18.
TG8硬抽合金刀具的离子束改性研究   总被引:1,自引:1,他引:0  
  相似文献   

19.
离子注入材料改性用强流金属离子源   总被引:3,自引:3,他引:3  
为满足离子注入材料改性研究和实际应用的需要。研制了一个金属蒸汽真空弧(简称MEVVA)离子源.这是一新型离子源种,它利用阴极和阳极间的真空弧放电原理由阴极表面直接产生高密度金属等离子体,经一多孔三电极系统引出得到强流金属离子束.该源脉冲工作方式,已引出Al,Ti,Fe,Cu,Mo和W等离子,脉冲离子束流强度为0.6~1.26A,Ti的平均束流强度已达10mA.引出束流大小与源的工作参数、引出结构和电压以及阴极材料有关。该源没有气体负载,工作真空度为3×10~(-4)Pa。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号