首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
软体机器人是由柔性材料加工而成的,可以任意改变自身尺寸,与刚性机器人相比具有高顺应性、适应性和安全性等特点,在工业、农业、医疗、救灾等领域都有广阔的应用前景,受到国内外学者的青睐。文中从制作材料、制作方法、驱动方式、应用领域、传感与控制方面对软体机器人进行综述,介绍了软体机器人的制作材料和柔性材料的新成果,以及近年来制作软体机器人较新的方法;按照驱动方式将软体机器人分为流体驱动、智能材料驱动、化学反应驱动,并对每种驱动方式的特点和典型结构进行了总结;对软体机器人的建模方法和控制策略进行归纳与分析,得出了开发刚柔并济的新材料、高效制造和精准控制是研究软体机器人的未来方向。  相似文献   

2.
 选择合适的驱动方式是软体机器人研究中的一项重要课题。因其材质与结构的特殊性,软体机器人对驱动方式的选择也有着更高的要求。  相似文献   

3.
软体机器人前沿技术及应用热点   总被引:1,自引:0,他引:1  
 随着材料学、化学、控制等学科的不断突破,人们对章鱼、蠕虫、海星等软体生物的观察及建模有了突破性进展,并衍生出一门新的机器人研究方向--软体机器人。本文通过回溯软体机器人的发展历程,介绍了近年来软体机器人在材料类型、驱动方式、应用领域等方面取得的进展以及面临的挑战,并结合中国国情展望了软体机器人未来发展的前景与方向。  相似文献   

4.
尖端生长型软体机器人是一类新型的软体机器人,其制作简单、成本低,通过压力驱动主体外翻实现机器人的"生长",且具有运动过程中无环境阻力的独特优势,在诸多领域有着广阔的应用前景.目前,机器人的变刚度控制、大范围变形检测及精准控制是软体机器人存在的三个主要问题.围绕提出的软体机器人存在的三个主要问题,从机器人灵感来源、基本结...  相似文献   

5.
控制系统是机器人实现运动的关键.通过对所设计的由气动软体致动器驱动的仿青蛙游动软体机器人的机械结构和其仿生游动功能需求的分析,建立气动系统和电气系统,并通过Labview编写上位机软件,采用无线通讯的方式实现对仿青蛙游动软体机器人的远程调控以及数据采集,避免外接线束和管路对仿青蛙游动软体机器人运动的干扰,方便对仿青蛙游动软体机器人运动性能进行测试.经过实验验证,所设计的控制系统性能稳定、工作可靠,完全满足仿青蛙游动软体机器人的功能需求.  相似文献   

6.
软体机器人研究综述   总被引:3,自引:0,他引:3  
机器人技术广泛应用于工业生产、医疗服务、勘探勘测、生物工程、救灾救援等领域.传统机器人大都由刚性机构组成,存在环境适应能力低的缺点.软体机器人是一类新型仿生连续体机器人,可以任意改变自身形状,在非结构化环境中应用前景广阔.综述了软体机器人的仿生机理、驱动方式、建模与控制方法等关键问题,并通过分析和梳理软体机器人技术发展中的瓶颈问题及可行解决方案,探讨了软体机器人技术的发展趋势.  相似文献   

7.
 随着水下作业要求的增加以及软体机器人技术的发展,水下软体机器人的研究成为水下机器人的一个前沿方向。用人工肌肉实现驱动控制并能实现仿生运动的水下软体机器人成为相关领域的研究热点。本文介绍现有水下软体机器人中7类人工肌肉驱动方式,再根据水下软体机器人推进形式,按5种仿生运动形式介绍了现有的水下软体机器人,最后展望了水下软体机器人未来在水下勘探的应用前景。  相似文献   

8.
 机器人软体材料分为软体驱动材料和软体感知材料,在仿生机器人中分别起到效应器与感受器的作用。故在制造仿生机器人时,软体材料的开发越发重要。本文概述了机器人软体材料与软体机器人概念上的差异,按照软体驱动材料和软体感知材料分别综述了机器人软体材料的发展动态,并探讨了这两类重要的机器人软体材料研发方面挑战及趋势。  相似文献   

9.
软体机器人的驱动一般由较硬的驱动元件与柔性介质复合而成,两相材料耦合大变形的精确描述是驱动部件结构设计与运动控制的关键.针对复合柔性板结构大变形的特点,基于绝对节点坐标方法,通过变形协调条件将梁和板单元进行耦合,同时引入压电驱动材料本构方程,建立带压电材料驱动器的复合柔性板结构动力学模型,并对其动力学特性进行分析,以研究不同参数对该动力学模型的影响.结果表明:柔性悬臂板结构在压电驱动作用下产生弯曲变形,变形量及板末端位移随驱动电压的增大呈近似线性增大规律,且板结构弹性模量越小则该变形量增大的程度越大;随着弹性模量减小,板结构产生的周期性振动幅度增大,周期变长.  相似文献   

10.
设计了一种三足软体爬行机器人,完成了机器人的直线、转向和路径规划运动实验研究.该软体爬行机器人采用了模块化设计,躯干和腿由硅胶和3D打印材料结合制造而成,便于组装和维护.软体爬行机器人前后腿的末端分别固定有摩擦滑块,用以辅助运动.软体爬行机器人采用电机-线缆驱动方式,通过对驱动电机的控制器编程,控制3个驱动电机协同工作来实现不同的运动形式,进行了直线爬行、转向运动和路径规划实验.实验结果证明,所提出的三足软体爬行机器人具备连续爬行和切换运动模式的复杂运动功能.  相似文献   

11.
软体机器人具有优越的柔软性能,能够灵活的穿越狭小的空间,并且对非结构化环境具有较强的自主适应能力.驱动方式和路径规划是软体机器人的关键,其驱动分为有缆驱动和无缆驱动.采用气动、形状记忆合金、电活性聚合物、聚合凝胶等作为驱动器.气动、形状记忆合金之类的驱动器灵活度低、自由度少;电活性聚合物以及聚合凝胶之类的驱动器灵活度高、自由度高.软体机器人的路径规划主要采用人工智能算法,在实际使用中还存在一系列的问题需要继续研究.比如概率路线法和碰撞检测法都易陷入局部最小点与最优点:遗传算法运算效率不高、在线规划困难:神经网络算法泛化能力差等.现在可用的智能算法都只适用特定的物体而不适用通用可变形物体.未来需要致力于柔性驱动器以及新型路径规划算法的研究.  相似文献   

12.
针对软体气动驱动器的变形机理,以气动驱动软体手为研究对象,开展了基于单向气动驱动器的软体手指弯曲和摆动机理的研究。设计了气动驱动软体手,其弯曲和摆动结构均由多个相互连通的气室和一个不可延伸层组成。当相邻气室因充气膨胀而相互挤压时,气室受到不可延伸层的约束,实现了弯曲和摆动变形。为进一步考察软体手的变形机理,对620#T超弹性硅橡胶材料的非线性力学特性进行了研究,测定了其材料常系数。基于Yeoh模型密度函数,结合空间力矩平衡方程,建立了驱动压强和曲率半径的理论模型,并开展了软体手指弯曲及摆动变形的仿真研究,结果证明了理论模型的正确性。研究结果可以为其他基于气动驱动的软体结构变形机理研究提供理论基础。  相似文献   

13.
现有的沙土移动机器人大多采用刚性结构, 在复杂的工作环境中 常常会发生打滑、沉陷、翻倒等问题, 缺乏良好的环境适应能力. 针对该问题设计了一种面向沙土环境的仿弹涂鱼气动软体机器人; 基于地面力学理论和软体机器人建模方法, 考虑机器人在沙土环境下的约束条件, 通过对软肢体与沙土间力学交互特性的分析, 建立了软肢体/机器人-沙土交互力学模型, 并构建了输入气压与机器人运动特性的关联; 通过实验验证了软体机器人-沙土交互力学模型的有效性和准确性. 实验结果表明, 该软体机器人具有环境适应性强、控制简单、柔顺性高等优点.  相似文献   

14.
 电活性聚合物材料是一种具有电场响应变形的软体智能材料,其质地柔韧,变形过程与生物肌肉类似,被公认为是一种理想的人工肌肉材料。基于电活性聚合物的变色技术具有贴近生物本体特征和适用于复杂结构的应用优势,为新一代变色伪装技术的发展提供了新的方向。介绍了自然界生物的变色机理,比较了避役科生物的结构变色和头足纲生物的化学变色的区别;分析了现有仿生变色技术的现状,发现其中存在变色调控方式复杂、缺少变形适应性的特征;介绍了电活性聚合物电致变形的基本驱动机理,指出了这种类肌肉驱动变色方式存在的先进性和前沿性;比较了几种典型的电活性聚合物的变色技术及其特点,并归纳了现有研究中存在的挑战。该技术的实施有望推动新一代军事伪装装备发展,为具有环境共融特征的机器人提供应用技术支持。  相似文献   

15.
为了探讨模块化软体机器人驱动模式多样性对实现有效运动的影响,设计了一个6模块软体爬行机器人,并进行了多模式运动分析。使用差动运动模块设计了一个通过前进波在机体上的传递实现运动的机器人;分析了爬行过程中充放气模块的受力状态和充放气模块位置间隔之间的关系,得出了满足充气时模块获取的运动量、放气时模块向前传递运动量这一单向运动必要条件的位置间隔关系式,依据该模型得到了6模块机器人的10种可行运动模式;采用集中质量法对机器人建立拉格朗日动力学模型,通过ADAMS仿真验证了不同驱动模式的可驱动性;通过实验验证了机器人的可行运动模式并得出了不同模式下的运动速度。研究结果表明:使用充放气模块位置间隔关系公式来分析模块化爬行机器人运动模式可行且准确;多模块软体机器人具有丰富的运动模式,依据驱动模式的不同即可实现运动速度的变化;通过选用高效的运动模式A1D2,多模块机器人可实现最大运动速度13.2mm/s。  相似文献   

16.
软体驱动器的变形方式主要为弯曲、伸缩变形,限制了软体驱动器的灵活性。为了提高软体驱动器的操作灵活性,提出一种新型的螺旋扭转变形软体驱动器。通过拉线驱动软体变形,骨架限制驱动器产生螺旋变形,实现驱动器末端在三维空间中的可控运动。基于常曲率连续软体运动学理论及螺旋扭转变形的几何关系,建立了一种适用于常曲率螺旋变形运动学模型,获取在全局坐标系下驱动器末端的坐标变换矩阵,实现对驱动器位姿的描述。通过仿真和实验数据验证,模型精度大于98%。为螺旋扭转变形驱动器的控制建立精确的运动学模型,为未来基于此软体驱动器的超高灵活性抓手的搭建提供了理论模型基础。  相似文献   

17.
鉴于目前关于的软体机器人的研究大多仅致力于软活性材料的驱动功能研究、而且忽视传感功能的研究,研究一款集驱动与传感一体化的柔性抓手机器人。首先研究PVC凝胶驱动器结构设计与制备工艺,然后研究CNT/PDMS柔性传感结构的制造工艺,在此基础上,以PVC凝胶驱动器作为柔性抓手的驱动单元,以CNT/PDMS立体结构作为柔性抓手的传感单元,设计出一款具有驱动与传感一体化的功能结构,并对该功能结构进行测试。研究结果表明:在施加800 V直流电压下单根手指的弯曲角度可达32.5°。在400V直流电压驱动下,由两根柔性手指构成的抓手能够抓取直径为15 mm、邵氏硬度分别为10-20、30-50的易变形的硅橡胶圆柱体;在抓取不同硬度的圆柱体时,CNT/PDMS的电阻变化率亦不同,表明CNT/PDMS柔性传感结构可以感知抓取物体的软硬度,证明了本研究关于驱动及传感一体化结构设计的可行性,本文的研究为后续软体机器人的设计及制造提供参考。  相似文献   

18.
设计了一种多气囊仿生软体机器人,由位于上方的多个相互连通的气囊和位于下方的双层底座组成,通过给气囊充气以使软体机器人产生弯曲,通过在软体机器人前、后表面设置不同的摩擦片,机器人能够利用前、后摩擦力的不同而得以前行;利用ANSYS软件分析软体机器人充气、放气过程中的内应力,以改善机器人的结构设计;采用Yeoh模型研究软体机器人运动过程中的力学特性,在理想条件下推导出软体机器人的前行步幅与气囊内部气体压力的非线性关系模型,并通过仿生软体机器人的充气和前行运动实验验证仿生软体机器人前行运动的可行性.结果表明,当充气压力为90kPa时,机器人前进的步幅为19.25mm,与其理论值(22.85mm)基本一致.  相似文献   

19.
针对光驱动软体机器人结构简单、成型工序复杂、且性能稳定性差的缺点,将增材制造技术应用于光驱动材料与结构的制造,开发了一种基于聚二甲基硅氧烷(PDMS)和碳纳米管(CNT)双层复合材料的增材制造工艺。工艺探索表明:注射泵流量为0.05mL/min、喷头移动速度为为30mm/s、打印喷头直径为0.3mm时,打印的PDMS平面有较好的平整度;当注射泵流量为0.4mL/min、喷头移动速度为33mm/s、打印喷头直径为0.4mm时,打印出的CNT单道成型轨迹较为连续和均匀,且打印出的平面较为平整;并且随着打印的PDMS、CNT层厚度的增加,双层结构的光驱动响应速度都会逐渐减小。增材制造软体机器手在光照下能够实现模仿人手的捏、抓、握等基本动作,表明了研究的光驱动材料增材制造工艺的可行性,为该类光驱动材料在软体机器人中的进一步应用奠定了基础。  相似文献   

20.
为了解决刚性机械手安全性低、适应性差的问题,设计一款具有抓取功能的软体机器人。该软体机器人由三个呈圆周 120°分布的软体驱动器和一个夹具组成,夹具可以实现自动化改变直径以适应不同大小物体的抓取,经测算软体机器人可以抓取直径范围为 45mm~97mm 的物体。夹具和软体驱动器都采用3D打印制造,具有成本低、制造简单、易于大规模生产的优点。软体机器人采用气压驱动,当给驱动器充气时,三手指同时弯曲抓取物体,具有很好的稳定性。对于软体驱动器建立了相应的力学模型,得到了弯曲角度与输入气压的关系,并利用ABAQUS 有限元仿真软件对驱动器弯曲特性进行仿真。对比发现,理论建模和仿真分析在驱动器弯曲角度具有很高的吻合性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号