首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
现实生活中绝大数系统都是非线性的,BP神经网络通过训练能否达到局部最优值、能否收敛以及训练的时间长短与初始值和阈值的选取关系密切.为此采用了具有动态惯性权重的粒子群算法对BP神经网络初始值进行优化.实验表明具有动态惯性权重的粒子群算法优化BP神经网络预测误差很小,能够跳出局部极小值,得到更优的结果.  相似文献   

2.
研究了基于粒子群算法的BP神经网络优化问题,将改进的粒子群优化算法用于BP神经网络的学习训练,并与传统的BP网络进行了比较.结果表明,将改进粒子群优化算法用于BP神经网络优化,不仅能更快地收敛于最优解,而且很大程度地提高了结果的精度.  相似文献   

3.
提出了一种改进的粒子群算法,很好地解决了基本粒子群算法中易陷入局部最优的缺点。通过比较和分析几个标准测试函数的计算结果,改进的粒子群算法的优良性得到充分的证明。改进的粒子群算法被用于优化神经网络的结构和参数,结果表明:不但网络的结构得到控制,而且泛化性能有了较大的提高。同时,算法在优化神经网络上的有效性也在4-CBA含量的软测量建模中得到了很好的证实。  相似文献   

4.
根据灰色神经网络的参数随机选择类似于粒子群算法中的粒子初始空间位置,采用改进粒子群算法代替梯度修正法,对网络参数进行了处理,并通过寻找粒子群算法中的最优个体,建立了基于改进粒子群算法的灰色神经网络,提高了预测模型的稳健性和精度.通过解决短期订货量问题,与反向传播(BP)神经网络、灰色神经网络、没有改进的粒子群灰色神经网络算法和基于遗传算法的灰色神经网络等方法进行了比较.分析结果表明,基于改进粒子群算法的灰色神经网络计算更为方便,并具有更好的逼近能力和预测精度.为优化网络模型参数提供了一种新方法,并拓展了预测模型的研究思路.  相似文献   

5.
尚宇  杨妮 《科学技术与工程》2020,20(4):1467-1472
为提高心理压力的识别率,提出一种改进的粒子群优化BP(back propagation)神经网络的压力识别算法。该算法在基本粒子群(particle swarm optimization,PSO)模型的基础上,引入了收缩因子,在收缩因子的作用下,使速度的边界限制消失,选取适当的参数来保证PSO算法的有界和收敛特性,实现对BP神经网络的优化。利用心算任务进行压力诱发,采集高压、低压状态下的心电信号,提取了与心理压力相关的心率变异性特征值,并对特征数据对比分析;建立了心理压力程度的分类模型,通过改进的PSO模型优化BP神经网络以识别心理压力。结果表明:改进的粒子群优化BP神经网络算法与BP神经网络相比收敛速度快、误差小且识别率高,该算法对心理压力的识别率可达94.83%,识别效果优于未优化的BP神经网络算法。  相似文献   

6.
边坡稳定性分析与评价是边坡工程的核心内容,具有高度非线性和不确定性特征。首先,选取了多个边坡工程实例构成学习样本集,以土体重度、内摩擦角、粘聚力、坡角、坡高、孔隙比六个主要影响因素作为土坡稳定性的评价判别指标;然后,采用改进的粒子群算法优化BP神经网络模型,将网络权值和阈值粒子化,通过引入粒子群进化度和粒子群聚合度实现惯性权重的动态变化,利用粒子群算法的全局搜索性实现网络权值和阈值的更新,从而增强算法对非线性问题的处理能力,加快了收敛速度;最后,通过与其它边坡稳定性评价算法进行比较分析,表明了本文研究算法的可行性与合理性。  相似文献   

7.
将粒子群优化的BP神经网络作为模型,参考自适应控制系统的控制器,把参考模型输出与系统实际输出的均方误差作为PSO-BP神经网络的适应函数,通过PSO算法强大的搜索性能使自适应控制系统的均方误差最小化.仿真实例结果表明,基于粒子群优化算法的BP神经网络自适应控制系统收敛快、精度高,有较好的网络的泛化和适应能力,能够很好地控制系统的输出跟随参考模型的输出.  相似文献   

8.
在分析粒子群参数特征的基础上,提出自适应粒子群优化算法,使用自适应粒子群优化BP神经网络,建立基于自适应粒子群优化BP神经网络(PSO-BP)的变压器故障诊断系统.通过对52组训练样本和28组测试样本的仿真实验,可知自适应PSO-BP法能提高变压器故障诊断的准确率,有效减小网络的误差精度.  相似文献   

9.
针对基于神经网络的财务预警方法网络结构复杂和训练时间长的缺点,笔者提出了基于粒子群优化神经网络的财务预警方法.首先对样本数据进行归一化处理,然后采用粒子群优化的BP神经网络来进行训练,最后用训练好的神经网络对我国上市公司财务状况进行预测.仿真实验表明,该方法克服了普通BP神经网络的缺点,使得网络结构的复杂度降低,同时提...  相似文献   

10.
提出了一种利用A lopex算法改进的粒子群优化算法,并将其应用于神经网络的建模中。改进的粒子群优化算法改善了粒子群优化算法摆脱局部极小点的能力,对典型函数的测试和基于神经网络的软测量建模表明:改进算法的全局搜索能力有了显著提高,特别是对多峰函数能够有效地避免早熟收敛问题。  相似文献   

11.
短时交通流量具有非线性、随机性等特点,如何准确地进行短时交通流量预测,是智能交通系统研究的一项关键内容。传统的预测模型不能实时反映短时交通流量变化特点,同时BP神经网络的交通流量预测存在收敛速度缓慢、易陷入局部极值、预测精度低等缺点。为了提高短时交通流量预测精度,提出了一种基于改进粒子群算法(IPSO)优化BP神经网络的复合预测模型,引入相对误差指标作为预测模型的评价指标,并利用实测的道路短时交通流数据对所构建的预测模型进行验证。结果表明,所提出的预测模型在短时间内寻出全局最优解,具有较好的预测精度,提高了短时交通流量预测的准确性和可靠性。  相似文献   

12.
近年来,中国煤炭等化石能源占终端能源消费的比例偏高,引起了严重的环境污染和能源资源的浪费,为了实现经济社会的绿色、可持续发展,中国提出了在终端能源消费环节实施电能替代的发展战略。因此,为了更精确地对电能替代潜力预测,基于改进的GRA-IPSO-BP模型,基于电能替代潜力影响因素的量化指标,构建了基于改进的GRA-IPSO-BP电能替代潜力预测模型。以浙江地区为例,拟合浙江地区电能替代电量的历史变化规律,并对浙江地区未来电能替代电量进行预测,研究方法有助于判断电能替代发展水平,有助于电能替代工作的推进。  相似文献   

13.
针对传统BP神经网络的入侵检测中,BP神经网络模型存在容易陷入局部最优、收敛速度慢、初始值随机性较大等缺点,本文提出改进天牛群算法(Beetle Swarm Optimization,BSO)用于优化BP神经网络的权值与阈值,并采用可变的感知因子及导向性的学习策略,以增强算法跳出局部最优的能力,提升算法全局寻优能力。利用天牛群算法群体智能的特点,提高BP神经网络的收敛速度。并将天牛群优化的BP神经网络模型应用于入侵检测,仿真实验结果表明优化后的BP神经网络模型能够显著提高模型的收敛速率和对入侵数据的检测率,降低误报率。  相似文献   

14.
基于粒子群优化的BP神经网络预测方法及其应用研究   总被引:1,自引:0,他引:1  
本文提出了一种基于粒子群优化的BP神经网络预测方法.该方法利用粒子群优化算法全局搜索BP神经网络的权值和阈值,并利用优化后的BP网络建立预测模型对经济指标进行预测.仿真实验结果表明,该方法克服了传统BP神经网络本身所存在的局部最小值和训练速度慢等不足,能够较好应用于定量经济指标预测,有效提高了预测的精度.  相似文献   

15.
针对目前线性建模解决舰艇内外磁场推算问题时存在的困难,从非线性优化的角度出发,建立了内外磁场之间的误差反向传播神经网络预报模型.为了改善网络的固有缺陷,利用粒子群算法优化网络的初始权值与阈值,使其能够逃离局部最优点,增强了网络的鲁棒性.该方法避免了利用线性化方法存在的诸多困难,可实现舰艇内外磁场推算.利用船模实验对网络预测的准确性进行了验证,结果表明其换算精度较线性方法有所提高,满足工程实际需求.  相似文献   

16.
介绍了粒子群优化(PSO)算法的原理,研究了将PSO算法应用于神经网络训练的方法,给出了算法软件实现的基本流程,并对Iris分类问题做了仿真实验,通过与BP算法的比较,结果表明基于PSO的神经网络训练算法操作简单,易于实现,而且训练精度较高,有良好的收敛性.  相似文献   

17.
李大毛 《河南科学》2010,28(12):1588-1591
考虑边坡稳定性受多种随机因素影响,借鉴当前研究成果,尝试建立一种将随机因素和确定因素分别考虑的新的边坡可靠性分析模型,借助演化计算技术之一的粒子群优化算法收敛快和精度高的优点,通过设置影响其收敛速度的惯性因子,提高算法的收敛速度和精度,进行边坡最小可靠度指标的求解,并进行临界滑动面的搜索.研究成果表明,与其它方法比较,该方法具有较高的精确度和实用价值.  相似文献   

18.
针对拥有庞大数据量的全息图再现像质量不理想的问题, 提出一种针对粒子群优化算法(PSO: Particle Swarm Optimization)中学习因子和惯性权值进行动态调整的方法, 将改进后的算法与反向传播(BP: Back Propagation)神经网络相融合形成改进型粒子群优化BP 神经网络(MPSO-BP: Modified Particle Swarm Optimizing
BP Neural Network)并用于全息图压缩。通过与BP 神经网络和粒子群优化BP 神经网络(PSO-BP: Particle Swarm Optimizing BP Neural Network)压缩算法进行对比, 证明了该网络压缩算法在保持较好的压缩效率时得到的全息图再现像质量更好。  相似文献   

19.
认识和掌握贝叶斯网络架构是数据求索和知识创新范畴的主要探讨方式之一,当处在网络购架寻觅范围较广的条件下,过去的二值粒子组合改良计算方法时常表现出聚拢速率低,很可能滑入局部范围取优、认识和掌握精准度较低的劣势.在以往二值粒子组合改进计算方法的前提下,依托互信息粒子组合计算方法的初期化过程,减小计算方法的寻觅范围,并且设置新型的演变模型取代以往的演变方程,从而使改良后的计算方法拥有较大的求优功能.选取ASIA网络系统当作模仿样板,再和以往计算方法相比,最终说明改进计算方法可以利用不多的重复换代过程寻觅到极优的方程解,而且总体上不会增添计算过程的繁琐程度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号