共查询到18条相似文献,搜索用时 51 毫秒
1.
采用脑电情感数据集SEED进行情感识别研究,旨在利用深度学习中的卷积神经网络(CNN)自动提取脑电样本的抽象特征,省去人工选择特征与降维的过程。首先,采用小波包变换(WPT)对脑电信号进行6级分解并构成二维结构样本;然后,通过改变网络深度设计了6个深度不同的CNN模型;最后,通过投票法与加权平均法建立集成模型,提高了识别精度。实验结果表明,本文方法对3种情感类别的平均分类精度达到了93.12%,能够满足情感识别的研究需求。 相似文献
2.
为深入研究脑电信号时空特征之间的关联,解决因手动提取特征导致的脑电情感识别准确率较低问题。将卷积神经网络(Convolutional neural network, CNN)和长短时记忆网络(Long short- term memory, LSTM)相结合,构造出了CNN-LSTM模型。首先,提取了5个频段的5个不同特征:功率谱密度(PSD)、差分熵(DE)、差分不对称(DASM)、理性不对称(RASM)和差分熵差分(DCAU)。其次,将特征输入CNN-LSTM模型,在DEAP数据集中的效价和唤醒两种情感维度上展开四分类实验。最后,将堆栈自编密码器(SAE),卷积稀疏自编码器(CSAE),深度置信网络(DBN)分别与LSTM组合,构造SAE-LSTM,CSAE-LSTM,DBN-LSTM三种混合模型同CNN-LSTM进行分类准确率比较。实验结果表明,DE特征的分类识别效果在五种特征中占最优,β和γ频段上所有特征的识别准确率远高于其他频段,尤其是γ频段。CNN-LSTM模型获得了最高的平均分类准确率92.48%,充分证明了CNN-LSTM模型的有效性。 相似文献
3.
脑电信号(Electroencephalogram,EEG)包含丰富的时间,空间和频率信息,是最能准确反映情感状态的生理信号,在情感识别领域发挥着重要作用。由于单特征的脑电情感识别研究方法存在缺失信息的问题,因此提出了三维融合特征的脑电信息处理方法,将脑电信号的微分熵频域特征和八种时域特征进行融合,按照电极片位置信息进行空间排布,提取脑电信号的三维混合特征。将注意力机制引入多任务卷积神经网络(Multi Task Attention Convolutional Neural Network,MTA-CNN),并将构造的三维特征作为输入进行测试分析。结果表明,所提出模型方法在DEAP数据集的效价维和唤醒维二分类问题准确率均有显著提升。 相似文献
4.
混合蛙跳算法神经网络及其在语音情感识别中的应用 总被引:2,自引:1,他引:2
该文将混合蛙跳算法(SELA)优化方法应用于人工神经网络训练中,对6种语音情感进行了语音情感特征的分析与识别。研究了谐波噪声比特征随情感类别的变化特性。利用混合蛙跳算法训练随机产生的初始数据优化神经网络的连接权值,快速实现了网络收敛。实验比较了BP神经网络、RBF神经网络和SFLA神经网络的语音情感识别性能。结果表明,SFLA神经网络的平均识别率分别高于BP神经网络和RBF神经网络4.7%和4.3%。 相似文献
5.
语音情感识别是实现自然人机交互的重要组成部分,传统语音情感识别系统主要集中于特征提取和模型构建.本文提出一种将深度神经网络直接应用于原始信号的语音情感识别方法.原始语音数据携带了语音信号的情感信息、二维空间信息和时序上下文信息.建立的模型以端到端的方式进行训练,网络自动学习原始语音信号的特征表示,无需手工特征提取步骤.... 相似文献
6.
为了提高脑电信号情感识别的准确率,提出了一种基于卷积神经网络(CNN)和长短时记忆(Long Short-Term Memory,LSTM)网络的脑电信号情感识别方法.首先,对62个通道的脑电信号进行预处理,并对预处理后的每个通道的脑电信号分别采用一维卷积神经网络提取情感特征.然后,利用LSTM网络在序列上的建模能力,... 相似文献
7.
8.
介绍了径向基函数神经网络的原理、训练算法,并建立了RBF神经网络的语音情感识别的模型。在实验中比较了BP神经网络与RBF神经网络分别用于语音情感识别识别率,RBF神经网络的平均识别率高于BP神经网络3%。结果表明,基于RBF神经网络的语音情感识别方法的有效性。 相似文献
9.
【目的】传统压缩感知中存在观测矩阵对信号适应性和重构算法对字典依赖性的问题,深度压缩感知则利用深度学习的方法解决传统压缩感知中存在的问题。【方法】利用深度信念网络(DBN)能够在不破坏观测矩阵随机性的前提下对信号进行自适应压缩,同时利用栈式自编码器(SAE)可以端到端地训练重构网络来摆脱重构算法对稀疏字典的依赖性,根据信号的稀疏表示中所具有的判别性,提出基于DBN和SAE的压缩感知识别模型(CS-DBN-SAE)。【结果】在DEAP情感脑电数据库上的四分类实验结果表明,CS-DBN-SAE模型的识别率达到83.29%,相比于传统压缩感知识别模型均取得了4.3%以上的提升。 相似文献
10.
提出了一种基于分子动力学模拟与云模型理论的改进混合蛙跳算法(MD-CM-SFLA).该算法将青蛙个体等效成分子,仅考虑最差个体和全局最优个体之间的吸引力,采用一种新的分子间作用力来代替两体间经典的Lennard-Jones作用力,并利用Velocity-Verlet算法和正态云发生器代替混合蛙跳算法的更新策略,有效平衡了种群的多样性和搜索的高效性.然后,将MD-CM-SFLA算法与BP神经网络相结合,设计出一种MD-CM-SFLA神经网络,并将其应用于耳语音情感识别中.耳语音情感识别结果表明,MD-CM-SFLA神经网络相对于BP神经网络具有明显的优势,在相同的测试条件下,其平均识别率较BP神经网络提高5.2%.由此表明,利用MD-CM-SFLA算法优化BP神经网络的参数,可以实现BP神经网络的快速收敛,获得较好的学习能力,从而为耳语音情感识别提供一种新思路. 相似文献
11.
为了有效识别癫痫脑电信号,建立了基于误差反向传播(BP)神经网络的癫痫脑电信号识别模型,并提出了一种适合于非平稳脑电信号的特征提取方法。本文以临床采集的包含癫痫发作期的五组500个EEG公共数据为样本,选择了具有任意多分辨分解特性的小波包.对信号进行多尺度分解,提取了各级节点的小波包系数。将小波包系数能量作为特征值,构建了特征向量并输入到BP神经网络分类器中进行自动识别。实验结果表明,该算法的识别率达到了92.5%。 相似文献
12.
针对现有卷积神经网络脑电信号(electroencephalogram,EEG)分类模型分类精度低、方法复杂且耗时的问题,对卷积神经网络的卷积层进行了改进,提出了多尺度卷积核卷积神经网络(convolutional neural networks,CNN)脑电分类模型,并在输入数据前加了系数矩阵,该系数矩阵可以随网络的训练逐步更新,代替了手工提特征再送入网络的步骤,有助于提高分类精度。最终本文的脑电分类模型在高原脑电信号的分类实验中,二分类准确率比改进前提高8%,三分类、四分类准确率分别达到92.87%、81.15%,分类准确率较高,对脑电信号的分类具有较高的参考价值。 相似文献
13.
为提高利用表面肌电信号(sEMG:Surface Electromyography)进行手势识别的准确率并解决其受不同提取特征影响的问题,提出了一种基于多路卷积神经网络(MB-CNN:Multi-Branch Convolutional Neural Networks)的手势识别方法.首先,使用MYO手环采集8种不同手... 相似文献
14.
基于脑电图(EEG)信号对情感识别计算进行研究.针对脑电图的特征提取难和模型计算难的问题, 提出了一种从EEG信号中获得可靠区别特征的创新方法.该方法将微分熵与线性判别分析(LDA)相结合,可被应用于情绪EEG信号的特征提取.采用3类情绪EEG数据集进行实验,结果表明该方法能够有效提高EEG分类的性能:与原始数据集的结果相比,平均准确度提高了68%,比单独使用微分熵进行特征提取时的准确度高7%.总执行时间结果证明提出的方法具有较低的时间复杂度.研究结果在3类情感脑电图识别领域具有重要的实用价值,可被应用于实际的工程领域. 相似文献
15.
在传统的HMM语音识别方法的基础上,提出了两种改进的竞争神经网络算法,分别用于语音识别的两个不同方面.首先提出了一种基于选择机制的新的竞争算法,这种算法可以有目的性地避免局部最优,而且可以克服模拟退火算法(SA)的随机性.然后,针对分类器的特性,对竞争算法进行改进,把安全拒识措施结合到竞争算法中,提出了一种新颖的神经网络——并行、自组织、层次神经网(PSHNN).实验结果表明,基于竞争神经网络算法的语音识别系统比传统的语音识别系统在识别能力和识别速度上都有明显提高,从而证明了与竞争神经网络算法结合的语音识别方法是可行的,而且具有良好的发展和应用前景. 相似文献
16.
为了分析突发事件期间网络舆论的情感倾向,以更有效地调节人们的情绪,维护社会稳定。本文提出了一种融合BERT模型和多通道卷积神经网络的深度学习方法用于细粒度情感分类,以获取更加丰富的文本语义特征信息。通过BERT 对输入的文本进行编码,以增强文本的语义特征表示,再通过具有多个不同大小的卷积核的并行卷积层来学习文本特征,捕获文本的深层次特征,提升模型在文本分类的性能。对比实验表明,该模型在准确性、召回率和F1值方面均优于传统的情感分类模型,并能显著改善细粒度情感分类的性能。除此之外,本文还探究了表情符号对细粒度情感分类模型的影响,实验结果表明表情符号转换成文字后可以增强文本的情感特征提取能力,提升模型分类性能。 相似文献
17.
由于说话人的语音信号具有时变性、随机性,其特征参数也呈现出高维及相邻帧变化较大等特点。从量子信息处理理论出发,将一帧语音信号视为一个量子态,在传统神经网络的基础上,利用量子逻辑线路构造神经网络,实现说话人语音信号的有效聚类,探索一种基于量子逻辑线路神经网络的说话人识别模型与方法。利用模型固有的大量全局吸引子,可有效降低语音信号处理的时间及复杂度。通过在经典计算机上模拟仿真,并与BP神经网络说话人识别模型进行对比,表明该方法能够加快说话人识别模型的收敛速率,对参数变化具有更好的鲁棒性,且其系统识别率比BP神经网络方法平均提高了3.34%。 相似文献
18.
基于神经网络的语音识别研究 总被引:3,自引:0,他引:3
由于具有良好的抽象分类特性,神经网络现已应用于语音识别系统的研究和开发,并成为解决识别相关问题的有效工具.为解决一般语音识别系统准确率较低的问题,本文分别给出了由循环神经网络(RNN)和多层感知器(MLP)组成识别模块的两种语音识别系统,并对二者识别的准确性进行了比较.介绍了特征提取模块的主要工作步骤并讨论了组成识别模块的上述两种神经网络结构.其中,特征提取模块利用线性预测编码(LPC)倒谱编码器,把输入语音翻译成LPC倒谱空间中的曲线;而识别模块完成对某个特征空间曲线之间的联系和单词的识别.实验结果表明,MLP方法准确率高于RNN方法,而RNN方法准确率可达85%. 相似文献