首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 296 毫秒
1.
设G=(y,E)是n阶简单连通图,D(G)和A(G)分别表示图G的度对角矩阵和邻接矩阵,则L(G)=D(G)-A(G)称为G的拉普拉斯矩阵利用图的度序列,平均二次度和图的公共邻点数结合非负矩阵谱理论给出了L(G)的最大特征值的一些上界.  相似文献   

2.
设G=(V,E)是一个具有n个顶点的简单图,A(G)是G的邻接矩阵,D(G)表示G的度对角矩阵,图G的拉普拉斯矩阵定义为L(G)=D(G)-A(G).若矩阵L(G)的特征值为μ1≥μ2≥…≥μn-1≥μn=0,则称μn-1为G的代数连通度.研究了正则图的代数连通度,得到了下列结论:μn-1≤(nrln(n-l))/(6n-8-4r-nln(n-1))这里,r表示正则图的度.  相似文献   

3.
主要研究冠的拉普拉斯谱.设G1 G2是两个简单连通图G1和G2的冠,L1是G1的拉普拉斯矩阵,μ1,μ2,…,μm是G2的拉普拉斯谱,且0=μ1<μ2≤…≤μm,利用分块矩阵证明了G1 G2的拉普拉斯矩阵L的特征多项式|λI-L|=[Πmi=2(λ-1-μi)n]-L1-(λ-m-1)IλI(λ-1)I,其中|V(G1)|=n,|V(G2)|=m.  相似文献   

4.
随着计算机技术和网络技术的不断发展,图的谱被广泛应用于网络拓扑结构的特征分析,Laplacian矩阵的谱(特别是最大特征值和次小特征值)在网络结构中扮演重要角色.设G=(V,E)是一个具有n个顶点的简单图,A(G)为G的邻接矩阵,D(G)为G的度对角矩阵.定义G的Laplacian矩阵为L(G)=D(G)-A(G),设L(G)的特征值为μ1(G)≥μ2(G)≥…≥μn-1(G)≥μn(G)=0,最大特征值μ1(G)称为图G的Laplacian谱半径;次小特征值μn-1也称作图G的代数连通度.本文讨论了树的L(G)的最大与次小特征值和μ1(G)+μn-1(G)的上界,得到几个有意义的结论.  相似文献   

5.
设G=(V,E)是n阶简单连通图,D(G)和A(G)分别表示图的度对角矩阵和邻接矩阵,L(G)=D(G)-A(G)则称为图G的拉普拉斯矩阵。利用图的顶点度和平均二次度结合非负矩阵谱理论给出了图的最大拉普拉斯特征值的新上界,同时给出了达到上界的极图,并且通过举例与已有的上界作了比较,说明在一定程度上优于已有结果。  相似文献   

6.
设G是n阶简单连通图,则L(G)=D(G)-A(G)称为图G的拉普拉斯矩阵,其中A(G)和D(G)分别表示图G的邻接矩阵和度对角矩阵.结合非负矩阵谱理论,利用图的边数、顶点数、最大度、最小度给出了图的拉普拉斯谱半径的新上界,同时给出达到上界的极图,并通过举例将所给的上界与已有的上界作比较,结果说明在一定程度上新上界优于已有结果.  相似文献   

7.
给出一个图G,称矩阵Q=D+A为无符号拉普拉斯谱矩阵,其中A表示G的邻接矩阵,D表示G的顶点度对角矩阵.研究了循环图的无符号拉普拉斯谱半径的上界,得到了几个有意义结果.进一步,讨论了循环图的卡氏积图的无符号拉普拉斯谱半径上界.  相似文献   

8.
图G=(V,E)为n阶有限图,A和D分别表示图G的邻接矩阵及度矩阵。R=D+A称为图G的无号拉普拉斯矩阵。利用代数方法和微积分中函数极值条件,对图和补图的无号拉普拉斯谱半径之和的上界进行了估计,得出了2个新的上界。  相似文献   

9.
关于图的Laplacian谱半径的一个改进上界   总被引:1,自引:0,他引:1  
设G为n阶简单连通图,若L(G)为图G的度对角矩阵与邻接矩阵的差,称L(G)为图G的Laplacian矩阵.本文利用图的度序列平方和与非负矩阵谱理论给出了L(G)的谱半径的一个新上界,改进了现有结果.  相似文献   

10.
若一个连通图G的点集是V(G)={v1,v2,…,vn},那么图G的距离矩阵D(G)=(dij),其中dij表示点vi与vj之间的距离.令TrG(vi)表示点vi到图G中其他所有点的距离之和,Tr(G)表示i行i列位置的元素TrG(vi)的对角矩阵.图G的距离无符号拉普拉斯矩阵QD(G)=Tr(G)+D(G).QD(G)的最大特征值λQ(G)是图G的距离无符号拉普拉斯谱半径.该文确定了给定匹配数的n个点的图的距离无符号拉普拉斯谱半径的下界.  相似文献   

11.
设G=(V(G)),E(G)),H=(V(H),E(H))是两个简单的连通图,定义与的Cartesian积G×H图是:其顶点集为V(G×H)=V(G)×V(H),其中任何两个顶点(u,u’),(v,v’),相邻当且仅当u=v且u’,v’在H中相邻;或u’=v’且u,v在G中相邻,这里u,v∈V(G),u’,v’∈V(H).本文研究两个图的Cartesian图的拉普拉斯矩阵的最大特征值,得到如下结论:设简单图G具有n顶点m条边,图H具有P个顶点q条边,那么G和H的Cartesian积图G×H的拉普拉斯最大特征值p(L(G×H))≤2m/n[1+(n-1)(((n3/4m2)-(1/n-1))~(1/2))]+((2p-1)~(1/2))+1.  相似文献   

12.
设G为n阶简单连通图,若L(G)为图G的度对角矩阵与邻接矩阵的差,则称L(G)为图G的Laplacian矩阵.结合非负矩阵谱理论,利用图的顶点度和平均二次度给出了图G的Laplacian矩阵的谱半径的新上界,同时给出了达到上界的极图.  相似文献   

13.
点赋权图Gw=(V,E,W)是指对简单图G的顶点集作一个赋权函数W:V→R^+。在图G所有的控制集D V(G)(V(G)/D中的任意顶点v都与D中的点关联)中最小的权和W(D)称为图Gw的赋权控制数。记作γw(Gw)。证明了对基数为N,平均权为W^-的图Gw,其赋权控制数γw(Gw)≤Nw^-1δ+1^——1+1n(δ+1)。  相似文献   

14.
树的孤立点     
设G=(V,E)为连通图,L为它的Laplace矩阵,Y为L的对应于特征值λ的特征向量.相对于向量Y,顶点u∈V称为是G的孤立点,如果Y[u]=0,并且对任意与u相邻的顶点v,均有Y[v]=0.论文证明:对于树T,如果mL[T-v](λ)=mL(λ),则对λ的任意特征向量Y,v都是孤立点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号