共查询到17条相似文献,搜索用时 62 毫秒
1.
针对粒子群优化算法容易陷入局部极值,进化后期收敛速度慢、精度低等缺点,本文将粒子群优化算法与遗传算法相结合,在基本粒子群优化算法中引入了正态变异算子,提出了一种新的混合进化算法,新算法增加了种群的多样性,增强了算法的全局寻优能力,提高了算法的搜索效率。使用新算法对经典函数进行优化测试,结果表明,本算法保持了粒子群优化算法简捷快速、容易实现的特点;同时,正态变异算子的引入提升了算法后期的收敛速度与全局搜索能力。新的算法能够以更小的种群数和进化代数获得较好的优化能力,在克服陷入局部最优和收敛速度方面均优于基本粒子群优化算法、遗传算法以及加入混沌扰动的粒子群优化算法(CPSO)。 相似文献
2.
将粒子群优化算法与一种自适应局部搜索算法相结合,提出了一种新的混合粒子群优化算法,使粒子群算法寻优过程中的全局搜索能力和局部搜索能力良好平衡;采用了典型函数和模糊神经网络优化问题对算法性能进行测试,并与其它方法进行比较.实验结果表明,这种混合粒子群优化算法能获得质量更好的解,具有较高的收敛性,特别是在高维复杂函数优化上具有很强的竞争力,其性能大大优于单一的优化方法. 相似文献
3.
将粒子群优化算法与一种自适应局部搜索算法相结合,提出了一种新的混合粒子群优化算法,使粒子群算法寻优过程中的全局搜索能力和局部搜索能力良好平衡;采用了典型函数和模糊神经网络优化问题对算法性能进行测试,并与其它方法进行比较.实验结果表明,这种混合粒子群优化算法能获得质量更好的解,具有较高的收敛性,特别是在高维复杂函数优化上具有很强的竞争力,其性能大大优于单一的优化方法. 相似文献
4.
一种新的粒子群算法与人工鱼群算法的混合算法 总被引:1,自引:2,他引:1
通过分析粒子群算法和人工鱼群算法的优缺点,利用粒子群算法收敛速度快及人工鱼群算法能较好地收敛到全局最优解的特点,提出了一种新的混合算法.算法以粒子群为基础进行设计,根据人工鱼群的公告板、群聚和随行策略的模式对粒子群进行速度与位置变更,使原有的粒子群变成具有一定智能的粒子,从而达到提高搜索精度及效率的目的.通过Generalize-Schwefel等3个经典函数进行优化仿真后发现,该混合算法具有搜索精度更高及收敛速度更快的特点,同时该算法在求解高维问题时具有明显优势. 相似文献
5.
黄少荣 《辽宁大学学报(自然科学版)》2012,39(2):153-156
为进一步提高粒子群优化算法的搜索性能,在分析不同拓扑结构对算法性能影响的基础上,针对不同拓扑结构粒子群优化算法的优缺点,提出一种混合使用全局版本和局部版本粒子群优化算法的方法,每一代粒子在速度更新时随机选择全局模型或局部模型方式进行.在典型测试函数上进行对比实验,结果验证了新算法不仅能有效地进行全局搜索,而且具有更好的收敛精度. 相似文献
6.
为提高基本粒子群算法的搜索效率,引入和声算法中产生新解的策略(称之为和声策略),综合粒子自身经验和社会认知两方面的信息直接更新粒子的位置,提出了基于和声策略的新型粒子群优化算法,通过对高维复杂函数的优化分析比较结果表明,基于新型粒子群优化算法的搜索能力较基本粒子群优化算法大大提高。本算法对其它智能算法具有借鉴意义。 相似文献
7.
李晓静 《广西民族大学学报》2015,21(1)
针对粒子群算法在寻优中存在早熟和收敛精度不高等问题,论文对粒子位置的更新策略以及更新公式进行改进,提出了一种新的简化粒子群优化算法(New Simple Particle Swarm Optimization,NSPSO),并将其在15个多极值基准函数进行全局最优化测试,实验结果表明,NSPSO算法收敛的精度大大提高了,而且算法收敛速度也很快,对于高、低维复杂函数的优化均适用. 相似文献
8.
为了提高粒子群优化算法的局部搜索能力、算法的收敛速度和解的精度,提出了一种改进的混合粒子群优化算法。采用聚类方法和混沌初始化、同时引入线性组合式局部搜索过程,通过四个标准函数的测试实验,与标准粒子群优化算法、混沌粒子群优化算法进行比较分析,提出的算法寻找全局最优解的能力有显著的提高,算法收敛速度和解的精度均优于其它参与比较的算法。 相似文献
9.
标准粒子群算法能够解决各类优化问题,得到了广泛的应用,也引起很多研究人员的关注.为了提高全局搜索能力,使其不易陷入局部最优,提出了一种新的优化策略.首先,采用了佳粒子的概念,每次更新时,对所有粒子进行排序;然后,在此基础上,对所有的粒子进行评估,衡量每个粒子是否可以保留;最后,删除那些不符合保留要求的粒子,同时生成相应数目的新的粒子,以保持种群的规模,从而提高种群的整体适应性能.实验数据表明,新算法提高了算法的性能,具有更好的全局性能. 相似文献
10.
提出了一种改进的混沌粒子群优化混合算法.该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力.通过对3个标准函数进行测试,仿真结果表明该算法与差分进化粒子群优化(DEPSO)算法相比,全局搜索能力和抗早熟收敛性能大大提高. 相似文献
11.
李辉 《陕西理工学院学报(自然科学版)》2011,27(1):85-90
针对基本粒子群算法容易陷入局部最优的缺点,将禁忌搜索算法中的禁忌思想与粒子群算法结合,提出了一种新的粒子群算法——禁忌粒子群算法(TPSO)。该算法将粒子群算法找到的当前最优值禁忌一段时间后再释放,以此避免算法陷入局部最优,即使算法暂时陷入局部最优,该算法跳出局优的能力也很强。实验表明,TPSO在收敛速度以及收敛精度方面都比基本粒子群算法有了很大程度的提高,特别对于多极值问题搜索效果非常好,可以很好的解决算法陷入局部最优的问题。 相似文献
12.
13.
提出一种搜索空间自适应的自适应粒子群优化算法.该算法对不同等级的粒子适应值采取不同的惯性权重,并随着算法的迭代不断缩小粒子群的搜索空间.同时,选择当前代的较优部分粒子直接进入下一代,其他粒子通过在缩小的搜索空间内随机生成,加快了种群收敛速度,同时又能使种群不断跳出局部最优解.几种典型函数的仿真实验表明,该算法在收敛速度... 相似文献
14.
15.
通过把Pareto优与粒子群优化(PSO)算法相结合,利用给出的粒子的序值定义对粒子群中的粒子进行分离存档,给出了一种求解多目标优化问题的新粒子群存档算法。为了提高算法的全局收敛性,对PSO算法中的惯性因子ω执行自适应调节。数据实验比较表明该算法能找到问题数量更多、分布更广、更均匀的Pareto最优解。 相似文献
16.
为克服标准粒子群算法搜索后期收敛速度慢、容易陷入局部最优的缺点,通过引进自适应惯性权重因子平衡标准粒子群优化算法的全局搜索和局部改良能力,同时设计了均匀分布变异和高斯分布变异相结合的粒子群混合纵向多变异策略,来提高算法摆脱局部极值和局部寻优的能力.根据提出的改进算法流程,针对公认的Sphere,Rastrigin,Griewank和Salomon四种标准测试函数进行了收敛精度和收敛速度的测试.测试结果表明,在标准粒子群、自适应权重粒子群、自适应变异粒子群和自适应混合多变异粒子群4种算法中,提出的新算法具有最好的全局最优值搜索能力和最稳定的全局收敛特性,且在提高收敛速度的同时,有效地避免了早熟收敛问题. 相似文献
17.
针对现有特征选择方法中存在的收敛速度慢和计算效率低等问题,提出了一种基于樽海鞘群与粒子群优化的混合优化(hybrid optimization of salp swarm algorithm and particle swarm optimization,HOSSPSO)特征选择方法,该方法在樽海鞘群算法(salp swarm algorithm,SSA)的基础上,引入粒子群优化(particle swarm optimization,PSO),提高了SSA的收敛速度,改进了探索和开发步骤的效率,增加了解空间更多的灵活性和多样性,使得方法能够迅速获得全局最优值.为了验证算法的性能,在2个实验序列上进行了测试:第一个实验序列使用基准函数,将HOSSPSO与标准SSA、PSO进行了比较;第二个实验序列采用不同的UCI数据集,通过提出的算法确定最佳特征集.实验结果表明,相比于其他优化算法,HOSSPSO的性能更具优势,在多项评估指标中获得较好的效果,能以极少量的特征获得最大的分类精度. 相似文献