首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
定义1.标准函数f(x)在(a,b)(?)~*R上有定义,如果 {n/integral from n=a_n to n f(x)dx存在且有限}∈U其中a=[a_n],b=[b_n],U为自然数集N的自由超滤子,integral from n=a_n to b_n f(x)dx是Riemann意义下的积分,则称f(x)在(a, b)(?)~*R上可积,称非标准数[integral from n=a_n to n f(x)dx]为f(x)在(a, b)(?)~*R上的积分,记作integral from n=(a.b) to f(x)dx。  相似文献   

2.
在计算付伦涅尔积分的过程中,我发觉一些分析教科书上现成的积分次序交换定理都不能引用,因此我建立一个新的积分次序交换定理。 在分析教科书上找到的定理是: 定理A 设二元函数f(x,y)满足条件:(1)在区域上连续; (2)integral from a to ∞(f(x,y)dx)关于y∈[α,β]一致收敛,integral from a to ∞(f(x,y)dy)关于x∈[a,b]一致收敛,β,b是任意给定的数:β>α,b>a;(3)integral from a to ∞(dx) integral from α to ∞(|f(x,y)|dy),integral from α to ∞(dy) integral from a to ∞(|f(x,y)dx)至少有一个存在(有限)。那末  相似文献   

3.
本文在Riemann积分第二中值定理中,加上一个非常一般化的条件后,得出了一个较强的结果:设函数f在区间[a,b]上非负、不增,且f(a+0)-f(b-0)>0,函数g在[a,b]上Riemann可积,则存在一点ξ∈(a,b),使得integral from n=a to b f(x)g(x)dx=f(a)integral from n=a to ξ g(x)dx。  相似文献   

4.
在不定积分中,其中之一的积分方法:设y=f(x),x=φ(t)及f′(t)都是连续的,x=φ(t)的反函数t=φ~(-a)(x)存在且可导,并且∫f[φ(t)]·φ′(t)dt=F(t)+C,则∫f(x)dx=F[φ~(-a)(x)]+C。在定积分中的换元法则是:对于定积分integral from n=a to b(f(x)dx),其中f(x)在区间[a,b]上连续,如果函数x=0φ(t)满足下列条件(1)φ(t)在区间[α,β]上有定义′是单值的′单调的,且有连续导数φ′(t)。(2)当t在区间[α,β]上变化时,x=φ(t)的值在区间[a,b]上变化,在这些条件下,则有公式integral from n=a to b(f(x)dx)=integral from n=α to β(f[φ(t)·φ′(t)dt)  相似文献   

5.
<正>在定积分计算中,有如下性质.性质i:若f(x)为[-a,a]上的连续奇函数,则integral from n=-a to a f(x)dx=0性质ii:若f(x)为[-a,a]上的连续偶函数,则integral from n=-a to a f(x)dx=2 integral from n=0 to a f(x)dx本文将上述两个性质推广到如下情形、得到一个更一般的性质.性质1:若f(x)为闭区间[a,b]上的连续函数  相似文献   

6.
在数学分析中第二积分中值定理的基本形式是: 定理1 设f(x)在〔a,b〕(a〈b)上单调下降(即使广义的也可以),并且非负,则对〔a,b〕上的任意可积函数g(x),有integral from n=a to b (f(x)g(x)dx)=f(a) integral from n=a to b (g(x)dx) (1)其中ξ∈〔a,b〕。其证明可参见〔1〕、〔2〕、〔3〕。定理1仅告诉我们其中的ξ∈〔a,b〕,那么能否恰当地选取ξ,使之属于开的区间(a,b)呢?我们说,不一定!且看下面的例题。考虑〔0,(3/2)π〕上函数 f(x)=1与g(x)=cosx,显然它们满足定理1的条件,于是按照定理1,(1)式应该成立。然而  相似文献   

7.
本学报1979年第2期刊登了绍文同志《关于积分第一中值定理》一篇文篇,作者给出了定理的证明。本文就C∈(a,b)的问题再给出一个较为简明的证明,并给一个例子,说明连续的条件是必要的,即若f(x)在〔a,b〕上不连续时,则结论不再成立。这个定理是这样叙述的: 积分第一中值定理设在区间〔a,b〕上f(x)与g(x)都可积,且g(x)不变号,m≤f(x)≤M,则存在μ,m≤μ≤M,使下式成立 integral from n=a to b(f(x)g(x)dx)=μintegral from n=a to b(g(x)dx) (1)如果f(x)在〔a,b〕上连续,则可进一步证明,存在C∈(a,b),使 (?) (2) 为了叙述上的完整起见,把前一部分的证明也写上。证明:先证前一部分。由f(x)与g(x)在区间〔a,b〕上的可积性知(1)式左端的积分是存  相似文献   

8.
定理Ⅰ.設[a,b]是f(x)和a(x)的定义区,假如f(x)是一有界函数,a(x)是一有界变差的数函,那未黎曼一斯帝捷积分 (1) integral from n=a to b f(x)da(x) 存在的充要条件是对于任一正数η,成立着 (2)  相似文献   

9.
Ⅰ.引言§1.在這篇文章里,我們將引用下符號: AB=AB(x,y)=integral from n=a to b A(x,s)B(s,y)ds, (?)=(?)=integral from n=a to b A(x,s)B(y,s)ds, (?)=(?)=integral from n=a to bA(s,x)B(s,y)ds, (f,g)=integral from n=a to bf(x)g(x)dx,‖f‖~2=(f,f), Kψ(x)=integral from n=a to b K(y,x)ψ(y)dy。在(?)及(?)中,我們稱A為左因子,B為右因子抑^(?)及(?)是由於“A右乘以B”或“B左乘以A”得來的。此外,記(?)是一個(x,y)的函數,這個函數合有n個因子A_1(x,y),A_2(x,y),…,A_n(x,y),且認為它是由於從左至右逐次將前面運算所得的左因子右乘以緊接着後面的右因子經過(n-1)次運算得來的?(?)是由於以(?)为左因子右乘以右因子A_3(x,y)得來的。(?)是由於以(?)為左因子右乘以右因子A_4(x,y)得來的。依此類推,則A_1A_2A_3…A_(n-1)A_n(x,y)是由於以A_1A_2…A_(n-1)(x,y)為左因  相似文献   

10.
本文是作者工作[1]、[2]的继续。在[2]中作者利用拓扑度理论研究了实用上常见的多项式型Hammerstein非线性积分方程的固有值,即设Aφ(x)=integral from n=G to ∞k(x,y)f(y,φ(y))dy,(1)其中G表N维欧氏空间中某有界闭域,f(x,u)=sum from i=1 to n a_i(x)u~i.对核k(x,y)的假定为:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号