首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
得到两个全局性隐函数定理:定理1设D_1是第一可数的拓扑空间E_1的开子集.D_2是Banach空间E_2的开子集.映象f:(?)_1×(?)_2→Y(?)E关于第一变元连续且满足条件:1°|f(x,y_1)-f(x,y_2)|≤L(x)|y_2-y_1|.Ax∈(?)_1.y_1.y_2∈D_2.其中Y=D_2或D_2=Y=E_2,L(x)<1.L:(?)_1→R~+连续.则方程f(x.y)=y有连续解y:(?)_1→Y,即f(x.y(x))=y(x).(?)x∈(?)_1.定理2 设f:(?)_1×(?)_2→C((?)_2)满足条件:1°d(f(x,y_1).f(x,y_2))≤k|y_2-y_1|.(?)x∈(?)_1.y_1.y_2∈(?)_2.其中k<1是常数.d(·,·)表示:对有界闭子集A_1,A_2(?)(?)_2d(A_l,A_2)=sup{|y_1-y_2||y_1∈A_1,y_2∈A_2}2°(?)y∈(?)_2,多值映象,f(·,y)弱下半连续.C((?)_2)为(?)_2的有界闭凸子集类.则包含方程y∈f(x,y)有连续单值解y;(?)_1→(?)_2即y(x)∈f(x,y(x)) (?)x∈(?)_1还给出了对随机映象不动点存在性的一个应用.  相似文献   

2.
研究了复合泛函方程T(T(x)-T(y))=T(x+y)+T(x-y)-T(x)-T(y)在泛函Φ(x,y)限制下的稳定性问题.证明了:若E为Banach空间,泛函Φ:E×E→[0,∞)连续使得级数Φ(x)d=sum (2-j-1Φ(2jx,2jx)) from j=1 to ∞在E的任一有界子集上一致收敛,F:E→E是连续映射且满足‖F(F(x)-F(y))-F(x+y)-F(x-y)+F(x)+F(y)‖≤Φ(x,y)(■x、y∈E),则存在唯一的连续2-齐次映射T:E→E满足以上复合泛函方程且‖T(x)-F(x)‖≤Φ(x),■x∈E.  相似文献   

3.
§1 引言在本文中,我们考察具有相当广泛性的两类函数方程 f(x)=G(x,f(qx)) (Ⅰ)与 f(x)=G(x,f(q_1x),f(q_2x),…,f(q_mx)) (Ⅱ)我们将在Banach空间上给出函数方程(Ⅰ)、(Ⅱ)的连续解的存在性与唯一性定理,还要指出所得到定理的一系列重要推论,譬如文献[1]中的一个重要结果就是本文结果的特例。§2关于函数方程(Ⅰ)连续解的存在性与唯一性定理1 设E、F是同一数域(实数或复数域)上的两个Banach空间,U与V分别是空间E与F中以O为中心的闭球,其半径分别为α与β。如果函数方程(Ⅰ)具备下列条件: (Ⅰ)G是U×V到F内的连续映射,且满足Lipschitz条件,即存在常数L≥0,使‖G(x,y_1)-G(x,y_2)‖≤L‖y_1-y_2‖对一切x∈U,y_1,y_2∈V都成立; (Ⅱ)存在常数μ≥0,使对一切x∈U成立  相似文献   

4.
讨论了凸度量空间上不动点的存在和最佳逼近问题.主要得到以下结论:设(X,d)是一个凸度量空间,F是X的非空闭子集,T:F→X是一个连续映射且T(F)包含于X的一个紧子集D中,则T有不动点当且仅当对每一个ε>0,T具有ε-不动点;设(X,d)是一个完备的一致凸度量空间,M是X的一个闭凸集,如果对每一个x∈X,PM(x)是单点集,那么最近点投影P:X→M是连续的;设(X,d)是严格凸度量空间,MX是非空闭集,且是T-正则的,如果T是紧自映射且u∈X使d(T(x),u)≤d(x,u),x∈M,那么M中每一个u的最佳逼近点都是T的不动点.  相似文献   

5.
设E是自反的Banach空间且具弱连续正规对偶映像J:E→E*,C E是非空闭凸集.{T(t):t∈R+}:C→C的非扩张半群,且F(T(t))≠φ,f:C→C的弱压缩映像,在{αn},{tn}满足一定的条件下,若{xn}是由(1.3)和(1.4)式分别定义的迭代序列,则xn→q∈F(T(t)),(n→∞),且q是变分不等式的惟一解:〈(f-I)q,j(x-q)≤0,x∈F.  相似文献   

6.
设F为域且char F≠2,L为域F上李代数.L上的一个映射φ:L→L称为非线性强交换映射,如果对任意的x,y∈L,有[φ(x),y]=[x,φ(y)].当P为一般线性李代数gl(n,F)(n≥2)的抛物子代数时,证明了P上映射φ为非线性强交换映射当且仅当φ是P上数乘映射与中心映射之和;又当P是有限维单李代数L的抛物子代数时,证明了P上映射φ是非线性强交换映射当且仅当φ是P上数乘映射.  相似文献   

7.
关于一类E-凸集的判别准则   总被引:1,自引:0,他引:1  
首先给出了集合A={λ∈[0,1]:E(y) λ(E(x)-E(y))∈x,任意x,Y∈x}的稠密性证明,然后利用此引理并在映射E:R^n→R^n为连续映射的条件下,给出了一类E-凸集合的一个充要条件,这样将集合E-凸性的验证转化为验证对某一个λ∈(0,1),AEx (1-λ)Eλ∈x是否成立,简化了该类E-凸集合的判别。  相似文献   

8.
局部凸拓扑矢量空间内的广义拟变分不等式   总被引:3,自引:10,他引:3  
设X是局部凸空间E的仿紧凸子集 ,F :X→ 2 X 是集值映象 ,φ :X×X→R是实泛函 .研究下列抽象广义拟变分不等式 (AGQVI) :求 ^x∈X使得 ^x∈F(^x)和 φ(^x ,y)≤ 0 , y∈F(^x) ,其中 φ(x ,y)关于x是 0 转移紧下半连续的和关于y是 0 对角拟凹的 .作为应用 ,作者得到了最近文献中关于广义拟变分不等式的很多已知结果的推广 .  相似文献   

9.
设K是Hilbert空间E中非空闭凸集,Ti:K→K是具不动点集F(Ti)的严格伪压缩映像,且F=∩1≤i≤NF(Ti)≠φ,i=1,2,3,…,N.对x0∈K与{αn}(∈)[0,1],隐迭代格式{xn}定义为xn=αnxn-1+(1-αn)Tnxn,n≥1.这里Tn=TnmodN,如果{xn}收敛于Ti的公共不动点p∈F,i=1,2,3,...,N,且xn≠p,则对任意y∈F,有lim supn→+∞(y-p,xn-p/‖xn-p‖)≤0.称这一几何结果为逼近不动点的钝角原理.  相似文献   

10.
设2~X是X的非空子集全体所成之集合,E,F是Φ上的拓扑矢量空间(Φ是实数域R或复数域C),(·,·):F×E→Φ为双线性泛函,X是E的非空子集,S:X→2~E和M,T:X→2~F是集值映象和f:X×X→R.则广义双拟变分不等式问题(GBQVIP)是y∈X,使得y∈S(y)和inf Re(f—w,y—x)+f(y,x)≤0,x∈S(y)和f∈M(y).最近Shih-Tan在X为紧凸集和f≡0的情形下研究了上述GBQVIP解的存在性.本文讨论另一类双拟变分不等式问题,即找y∈X,使得y∈S(y)和(f—w,y—x)+f(y,x)≤0,x∈X和f∈M(y).得出了几个变分不等式和GBQVIP解的存在性定理.这些定理改进和推广了Ding-Tan的结果  相似文献   

11.
§1.E.F.Beckenbach(1937)曾引进广义凸性函数的概念,其定义如下.设{F(x)}是一族在(a,b)上连续的函数,它具有性质:对于任何x_1,x_2,a相似文献   

12.
设X,Y为(B)型空间,研究非线性完全连续作用于X带参数y的方程Ф_yx=x—F(x,y)=0设Ф_y0=0(有时φ_y0=0)。若F对x在x=0可微,则Ф_yx=x-F′(0,y)x T(x,y)=0 表Ω为正则值集合,Π为奇异值集合,则i[Ф_y,0]当y在Ω的连通区域D时为常数。设A=F′(0,y_0),y_0∈ΠX_1真为相应于固有值1的固有子空间,由完全连续线性算子理论,有X=X_1 X_2,相应一对投影P_1P_2且存在有逆线性算子R使R(I—A)x=x_2。本文得到如下结论,若y_0∈Πh=y-y_0。足够小F′(0,y)=A—S(h)。 y∈Ω充要条件为Ю_y=P_1RS(h)P_1—P_1RS(h)P_2[P_2 P_2RS(h)P_2]~(-1)P_2RS(h)P_1在X_1中有逆,此时i[Ф_y,0]=i[R,0]i[Ю_y,0]_(X_1)。 x=0是Ф_(y_0)x的孤立零点之充要条件为x_1=0是L_(x_1)=P_1RT(x_1 f(x_1,y_0)y_0)=0的孤立零点,其中x_2=f(x_1,y_0)是P_2x P_2RT(x_1 x_2,y_0)之解。此时i[Ф_(y_0),0]=i[R,0]i[L,0]X_1。最后,我们应用上述结果到非线性方程的分枝解问題。  相似文献   

13.
设X,Y,Z皆为拓扑向量空间,C和D分别是Y和Z中的闭凸锥.Z中由D规定的偏序如下:对任意z_1,z_2∈Z,当且仅当z_2-z_1∈D时,z_1≤z_2考虑下述多目标规划问题min f(x);s.t.x∈R(?){x ∈X且g(x)∈C},其中,f:X→Z;g:X→Y.定义1 设(?)∈R,如果(f(?)-D)∩(f(R)\{f(?)}=?,则f(?)称为(1)式的有效点.当f(?)是(1)式的有效点时,称(?)是(1)式的有效解.任给(?)∈R,作映射F(?):X→Z×Y为F(?)(x)=(f(?)-f(x)),g(x)).记H=(D\{0})×C,K(?)={F(?)(x)|x∈X},E(?)=K(?)-c1H.定义2称  相似文献   

14.
非线性膨胀型映射的不动点定理   总被引:1,自引:0,他引:1  
本文用(X,d)表完备的距离空间,简记为X。 函数φ(t)满足下面的条件(φ): (φ),φ:[0,∞)→[0,∞)对t不减,右连续,且对任意t>0,有φ(t)0,有ψ(t)>t。 定义1 设T为X的自映射,如果{(x,Tx):x∈X}为X×X中的闭集,则称T为闭映射。 引理1 若函数ψ(t)满足条件(ψ),则其反函数ψ~(-1)(t)满足条件(ψ)。 证明:显然ψ~(-1)(t)是[0,∞)→[0,∞)的严格增加的连续函数,对任意t>0,由ψ(t)>t得ψ~(-1)(φ(t))>ψ~(-1)(t),即ψ~(-1)(t)相似文献   

15.
设X是Banach空间,G是X的非空闭子集,C是X的有界闭凸子集,且0是C的内点,J:G→R是下半连续下有界函数;取x∈X,设φ(x)=infz∈G(J(z)+pC(x-z)).研究了广义扰动优化问题infz∈G(J(z)+pC(x-z))(记作(JC,x)-inf)解的存在性;讨论了函数φ(x)的单侧导数与(JC,x)-inf问题解的存在性的关系;给出了当C紧局一致凸,φ(x)的单侧导数等于1或-1时,(JC,x)-inf问题有解.所得结果推广了已有的一些结果.  相似文献   

16.
本文通过集值映射扩张刻画了k-半层空间和k-MCM空间.证明了以下结果:对于空间X下列论断等价:(1)X是k-半层空间;(2)对每个度量空间Y,存在保序算子Φ使得对每个集值映射φ:X→F(Y)都对应下半连续和k-上半连续集值映射Φ(φ):X→F(Y),使得Φ(φ)(x)在每个点x∈Uφ有界并且φ■Φ(φ),这里F(Y)是Y的所有非空闭集,Uφ={x∈X:φ在点x局部有界}.  相似文献   

17.
设R~n是n维欧几里德空间(n≥2),D=R~n是R~n中的一个真子域,对于x,y∈D,0log1/(1-c),存在F:R~n→R~n是一个拟共形映射,满足如下条件: 1) K_D(x,F(y))≤log1/(1-c) 2) F:R~n\D→R~n\D是一个恒等映射 3) logK_1(f)≤2/cK(x,y)  相似文献   

18.
设G是群,φ:G→G为自同构.若对任意的x∈G,有φ(x)x=xφ(x),则称φ为G上的交换自同构.设Tn是域F上所有n×n阶可逆上三角矩阵全体按矩阵乘法构成的群,n≥3,F*为F中非零元全体组成的乘法群.证明了映射φ:Tn→Tn为Tn的交换自同构当且仅当存在群同态σi:F*→F*,1≤i≤n,使得φ(A)=(∏ni=1σi(aii))A,对A=(aij)n×n∈Tn,并且对任意的k=1,2,…,n,以及任意的a∈Imσk,方程xσ1(x)σ2(x)…σn(x)=a在F*中存在唯一解.  相似文献   

19.
1 引言设 X 是赋范线性空间,G 是 X 中可近集,dist(x,G)=inf{‖x-y‖,y∈G},则 P_G(x)={u∈G,‖x-u‖=dist(x,G)}称为度量投影,而 P(x)∈ P_G(x)称为 P_G(x)的单值选。若 G是(?)eby(?)ev 集,则 P(x)与 P_G(x)没有区别。KyFan 及 Glickskerg 证明:在(UR)空间中若G 是闭凸集,则 P_G(x)在 X 上连续。下面我们推广上述结论和[2]中结论。称 P_G(x)为(范一弱)上半连续,若对任意(弱)开集 V,{x∈X,P_G(x)(?)V}是 X 中(弱)开集。当G 是(?)eby(?)ev 集时,上半连续与普通连续一样。称空间 X 具有(H)性质若‖x‖=‖x_n‖=1,x_n(?)x_0,则有 x_n→x_0。  相似文献   

20.
本文研究一类重要的模糊度量空问(X,d,min、max)中的非线性压缩型映射的不动点和映射对的公共不动点的存在及唯一性。主要结果为下面的两个定理。定理1.设在完备的模糊度量空间(X,d,min、max)中,映射 T:X→X 是(?)d-连续的,并且对 X 每一点,O_T(x,0,∞)是模糊有界的,设映射Φ:G→G 满足下列三个条件(i)Φ是非减的Φ(u)=(?)当且仅当 u=(?)时成立;(ii)对任—u(?),(?).这里Φ~n 表Φ的第 n 次迭代。(iii)存在 X 上的正整值函数 p(x),使对任意的 x,y∈X,成立。d(O_T(x,y,P(x)+P(y),∞))≤Φ(d(O_T(x,y,O,∞))).则映射 T 存在唯一的不动点 (?)定理2.设在完备的模糊度量空问(X,d,min,max)中,映射对 S,T:X→X 均为(?)连续的,并且对 X 的每一点 x,Os(x,0,∞)和 O_T(x,0,∞)都是模糊有界的,设映射Φ:G→G 满足定理1的条件(i)、(ii)和(iii)存在正整数 p 和 g 使得对任意的 x,y∈X,成立d(Os(x,p,∞)UO_T(y,q,∞))≤Φ(d(O_T(x,0,∞)∪O_T(y,0,∞))).则映射 S 和 T 存在唯一的公共不动点 x(?).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号