首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Effectively explaining and accurately forecasting industrial stock volatility can provide crucial references to develop investment strategies, prevent market risk and maintain the smooth running of national economy. This paper aims to discuss the roles of industry‐level indicators in industrial stock volatility. Selecting Chinese manufacturing purchasing managers index (PMI) and its five component PMI as the proxies of industry‐level indicators, we analyze the contributions of PMI on industrial stock volatility and further compare the volatility forecasting performances of PMI, macroeconomic fundamentals and economic policy uncertainty (EPU), by constructing the individual and combination GARCH‐MIDAS models. The empirical results manifest that, first, most of the PMI has significant negative effects on industrial stock volatility. Second, PMI which focuses on the industrial sector itself is more helpful to forecast industrial stock volatility compared with the commonly used macroeconomic fundamentals and economic policy uncertainty. Finally, the combination GARCH‐MIDAS approaches based on DMA technique demonstrate more excellent predictive abilities than the individual GARCH‐MIDAS models. Our major conclusions are robust through various robustness checks.  相似文献   

2.
In this paper we study the performance of the GARCH model and two of its non-linear modifications to forecast weekly stock market volatility. The models are the Quadratic GARCH (Engle and Ng, 1993) and the Glosten, Jagannathan and Runkle (1992) models which have been proposed to describe, for example, the often observed negative skewness in stock market indices. We find that the QGARCH model is best when the estimation sample does not contain extreme observations such as the 1987 stock market crash and that the GJR model cannot be recommended for forecasting.  相似文献   

3.
A recent study by Rapach, Strauss, and Zhou (Journal of Finance, 2013, 68(4), 1633–1662) shows that US stock returns can provide predictive content for international stock returns. We extend their work from a volatility perspective. We propose a model, namely a heterogeneous volatility spillover–generalized autoregressive conditional heteroskedasticity model, to investigate volatility spillover. The model specification is parsimonious and can be used to analyze the time variation property of the spillover effect. Our in‐sample evidence shows the existence of strong volatility spillover from the US to five major stock markets and indicates that the spillover was stronger during business cycle recessions in the USA. Out‐of‐sample results show that accounting for spillover information from the USA can significantly improve the forecasting accuracy of international stock price volatility.  相似文献   

4.
    
This paper uses high‐frequency continuous intraday electricity price data from the EPEX market to estimate and forecast realized volatility. Three different jump tests are used to break down the variation into jump and continuous components using quadratic variation theory. Several heterogeneous autoregressive models are then estimated for the logarithmic and standard deviation transformations. Generalized autoregressive conditional heteroskedasticity (GARCH) structures are included in the error terms of the models when evidence of conditional heteroskedasticity is found. Model selection is based on various out‐of‐sample criteria. Results show that decomposition of realized volatility is important for forecasting and that the decision whether to include GARCH‐type innovations might depend on the transformation selected. Finally, results are sensitive to the jump test used in the case of the standard deviation transformation.  相似文献   

5.
    
This paper studies the performance of GARCH model and its modifications, using the rate of returns from the daily stock market indices of the Kuala Lumpur Stock Exchange (KLSE) including Composite Index, Tins Index, Plantations Index, Properties Index, and Finance Index. The models are stationary GARCH, unconstrained GARCH, non‐negative GARCH, GARCH‐M, exponential GARCH and integrated GARCH. The parameters of these models and variance processes are estimated jointly using the maximum likelihood method. The performance of the within‐sample estimation is diagnosed using several goodness‐of‐fit statistics. We observed that, among the models, even though exponential GARCH is not the best model in the goodness‐of‐fit statistics, it performs best in describing the often‐observed skewness in stock market indices and in out‐of‐sample (one‐step‐ahead) forecasting. The integrated GARCH, on the other hand, is the poorest model in both respects. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
ARCH and GARCH models are substantially used for modelling volatility of time series data. It is proven by many studies that if variables are significantly skewed, linear versions of these models are not sufficient for both explaining the past volatility and forecasting the future volatility. In this paper, we compare the linear(GARCH(1,1)) and non‐linear(EGARCH) versions of GARCH model by using the monthly stock market returns of seven emerging countries from February 1988 to December 1996. We find that for emerging stock markets GARCH(1,1) model performs better than EGARCH model, even if stock market return series display skewed distributions. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

7.
    
This paper develops a dynamic factor model that uses euro area country-specific information on output and inflation to estimate an area-wide measure of the output gap. Our model assumes that output and inflation can be decomposed into country-specific stochastic trends and a common cyclical component. Comovement in the trends is introduced by imposing a factor structure on the shocks to the latent states. We moreover introduce flexible stochastic volatility specifications to control for heteroscedasticity in the measurement errors and innovations to the latent states. Carefully specified shrinkage priors allow for pushing the model towards a homoscedastic specification, if supported by the data. Our measure of the output gap closely tracks other commonly adopted measures, with small differences in magnitudes and timing. To assess whether the model-based output gap helps in forecasting inflation, we perform an out-of-sample forecasting exercise. The findings indicate that our approach yields superior inflation forecasts, both in terms of point and density predictions.  相似文献   

8.
    
This study compares the volatility and density prediction performance of alternative GARCH models with different conditional distribution specifications. The conditional residuals are specified as normal, skewedHyphen;t or compound Poisson (jump) distribution based upon a nonlinear and asymmetric GARCH (NGARCH) model framework. The empirical results for the S&P 500 and FTSE 100 index returns suggest that the jump model outperforms all other models in terms of both volatility forecasting and density prediction. Nevertheless, the superiority of the nonHyphen;normal models is not always significant and diminished during the sample period on those occasions when volatility experiences an obvious structural change. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
    
This paper considers the forecast accuracy of a wide range of volatility models, with particular emphasis on the use of power transformations. Where one‐period‐ahead forecasts are considered, the power autoregressive models are ranked first by a range of error metrics. Over longer forecast horizons, however, generalized autoregressive conditional heteroscedasticity models are preferred. A value‐at‐risk‐based forecast assessment indicates that, while the forecast errors are independent, they are not independent and identically distributed, although this latter result is sensitive to the choice of forecast horizon. Our results are robust across a number of different asset markets. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
    
We utilize mixed‐frequency factor‐MIDAS models for the purpose of carrying out backcasting, nowcasting, and forecasting experiments using real‐time data. We also introduce a new real‐time Korean GDP dataset, which is the focus of our experiments. The methodology that we utilize involves first estimating common latent factors (i.e., diffusion indices) from 190 monthly macroeconomic and financial series using various estimation strategies. These factors are then included, along with standard variables measured at multiple different frequencies, in various factor‐MIDAS prediction models. Our key empirical findings as follows. (i) When using real‐time data, factor‐MIDAS prediction models outperform various linear benchmark models. Interestingly, the “MSFE‐best” MIDAS models contain no autoregressive (AR) lag terms when backcasting and nowcasting. AR terms only begin to play a role in “true” forecasting contexts. (ii) Models that utilize only one or two factors are “MSFE‐best” at all forecasting horizons, but not at any backcasting and nowcasting horizons. In these latter contexts, much more heavily parametrized models with many factors are preferred. (iii) Real‐time data are crucial for forecasting Korean gross domestic product, and the use of “first available” versus “most recent” data “strongly” affects model selection and performance. (iv) Recursively estimated models are almost always “MSFE‐best,” and models estimated using autoregressive interpolation dominate those estimated using other interpolation methods. (v) Factors estimated using recursive principal component estimation methods have more predictive content than those estimated using a variety of other (more sophisticated) approaches. This result is particularly prevalent for our “MSFE‐best” factor‐MIDAS models, across virtually all forecast horizons, estimation schemes, and data vintages that are analyzed.  相似文献   

11.
    
This paper assesses the informational content of alternative realized volatility estimators, daily range and implied volatility in multi‐period out‐of‐sample Value‐at‐Risk (VaR) predictions. We use the recently proposed Realized GARCH model combined with the skewed Student's t distribution for the innovations process and a Monte Carlo simulation approach in order to produce the multi‐period VaR estimates. Our empirical findings, based on the S&P 500 stock index, indicate that almost all realized and implied volatility measures can produce statistically and regulatory precise VaR forecasts across forecasting horizons, with the implied volatility being especially accurate in monthly VaR forecasts. The daily range produces inferior forecasting results in terms of regulatory accuracy and Basel II compliance. However, robust realized volatility measures, which are immune against microstructure noise bias or price jumps, generate superior VaR estimates in terms of capital efficiency, as they minimize the opportunity cost of capital and the Basel II regulatory capital. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
    
We present a mixed‐frequency model for daily forecasts of euro area inflation. The model combines a monthly index of core inflation with daily data from financial markets; estimates are carried out with the MIDAS regression approach. The forecasting ability of the model in real time is compared with that of standard VARs and of daily quotes of economic derivatives on euro area inflation. We find that the inclusion of daily variables helps to reduce forecast errors with respect to models that consider only monthly variables. The mixed‐frequency model also displays superior predictive performance with respect to forecasts solely based on economic derivatives. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
    
This paper addresses several questions surrounding volatility forecasting and its use in the estimation of optimal hedging ratios. Specifically: Are there economic gains by nesting time‐series econometric models (GARCH) and dynamic programming models (therefore forecasting volatility several periods out) in the estimation of hedging ratios whilst accounting for volatility in the futures bid–ask spread? Are the forecasted hedging ratios (and wealth generated) from the nested bid–ask model statistically and economically different than standard approaches? Are there times when a trader following a basic model that does not forecast outperforms a trader using the nested bid–ask model? On all counts the results are encouraging—a trader that accounts for the bid–ask spread and forecasts volatility several periods in the nested model will incur lower transactions costs and gain significantly when the market suddenly and abruptly turns. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
    
This paper investigates the forecasting ability of four different GARCH models and the Kalman filter method. The four GARCH models applied are the bivariate GARCH, BEKK GARCH, GARCH-GJR and the GARCH-X model. The paper also compares the forecasting ability of the non-GARCH model: the Kalman method. Forecast errors based on 20 UK company daily stock return (based on estimated time-varying beta) forecasts are employed to evaluate out-of-sample forecasting ability of both GARCH models and Kalman method. Measures of forecast errors overwhelmingly support the Kalman filter approach. Among the GARCH models the GJR model appears to provide somewhat more accurate forecasts than the other bivariate GARCH models. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
    
This paper compares daily exchange rate value at risk estimates derived from econometric models with those implied by the prices of traded options. Univariate and multivariate GARCH models are employed in parallel with the simple historical and exponentially weighted moving average methods. Overall, we find that during periods of stability, the implied model tends to overestimate value at risk, hence over‐allocating capital. However, during turbulent periods, it is less responsive than the GARCH‐type models, resulting in an under‐allocation of capital and a greater number of failures. Hence our main conclusion, which has important implications for risk management, is that market expectations of future volatility and correlation, as determined from the prices of traded options, may not be optimal tools for determining value at risk. Therefore, alternative models for estimating volatility should be sought. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
    
This intention of this paper is to empirically forecast the daily betas of a few European banks by means of four generalized autoregressive conditional heteroscedasticity (GARCH) models and the Kalman filter method during the pre‐global financial crisis period and the crisis period. The four GARCH models employed are BEKK GARCH, DCC GARCH, DCC‐MIDAS GARCH and Gaussian‐copula GARCH. The data consist of daily stock prices from 2001 to 2013 from two large banks each from Austria, Belgium, Greece, Holland, Ireland, Italy, Portugal and Spain. We apply the rolling forecasting method and the model confidence sets (MCS) to compare the daily forecasting ability of the five models during one month of the pre‐crisis (January 2007) and the crisis (January 2013) periods. Based on the MCS results, the BEKK proves the best model in the January 2007 period, and the Kalman filter overly outperforms the other models during the January 2013 period. Results have implications regarding the choice of model during different periods by practitioners and academics. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
    
This paper investigates the forecasting performance of the Garch (1, 1) model when estimated with NINE different error distributions on Standard and Poor's 500 Index Future returns. By utilizing the theory of realized variance to construct an appropriate ex post measure of volatility from intra‐day data it is shown that allowing for a leptokurtic error distribution leads to significant improvements in variance forecasts compared to using the normal distribution. This result holds for daily, weekly as well as monthly forecast horizons. It is also found that allowing for skewness and time variation in the higher moments of the distribution does not further improve forecasts. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
    
In this paper we compare several multi‐period volatility forecasting models, specifically from MIDAS and HAR families. We perform our comparisons in terms of out‐of‐sample volatility forecasting accuracy. We also consider combinations of the models' forecasts. Using intra‐daily returns of the BOVESPA index, we calculate volatility measures such as realized variance, realized power variation and realized bipower variation to be used as regressors in both models. Further, we use a nonparametric procedure for separately measuring the continuous sample path variation and the discontinuous jump part of the quadratic variation process. Thus MIDAS and HAR specifications with the continuous sample path and jump variability measures as separate regressors are estimated. Our results in terms of mean squared error suggest that regressors involving volatility measures which are robust to jumps (i.e. realized bipower variation and realized power variation) are better at forecasting future volatility. However, we find that, in general, the forecasts based on these regressors are not statistically different from those based on realized variance (the benchmark regressor). Moreover, we find that, in general, the relative forecasting performances of the three approaches (i.e. MIDAS, HAR and forecast combinations) are statistically equivalent. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
    
Parameter instability and model uncertainty are two key problems affecting forecasting outcomes. In this paper, we propose a time-dependent weighted least squares with ridge constraint (TWLS-Ridge) to solve the above two problems in the forecasting procedure. The new TWLS-Ridge approach is applied to the heterogenous autoregressive realized volatility model and its various extensions. The empirical results suggest that TWLS-Ridge produces more accurate volatility forecasts than several alternative models dealing with parameter instability and model uncertainty. The superior performance of TWLS-Ridge is robust under different forecast horizons, evaluation periods, and loss functions. An investor with mean–variance preference can improve utility using TWLS-Ridge forecasts of oil volatility instead of ordinary least squares model forecasts.  相似文献   

20.
    
Volatility plays a key role in asset and portfolio management and derivatives pricing. As such, accurate measures and good forecasts of volatility are crucial for the implementation and evaluation of asset and derivative pricing models in addition to trading and hedging strategies. However, whilst GARCH models are able to capture the observed clustering effect in asset price volatility in‐sample, they appear to provide relatively poor out‐of‐sample forecasts. Recent research has suggested that this relative failure of GARCH models arises not from a failure of the model but a failure to specify correctly the ‘true volatility’ measure against which forecasting performance is measured. It is argued that the standard approach of using ex post daily squared returns as the measure of ‘true volatility’ includes a large noisy component. An alternative measure for ‘true volatility’ has therefore been suggested, based upon the cumulative squared returns from intra‐day data. This paper implements that technique and reports that, in a dataset of 17 daily exchange rate series, the GARCH model outperforms smoothing and moving average techniques which have been previously identified as providing superior volatility forecasts. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号