首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the light of the still topical nature of ‘bananas and petrol’ being blamed for driving much of the inflationary pressures in Australia in recent times, the ‘headline’ and ‘underlying’ rates of inflation are scrutinised in terms of forecasting accuracy. A general structural time‐series modelling strategy is applied to estimate models for alternative types of Consumer Price Index (CPI) measures. From this, out‐of‐sample forecasts are generated from the various models. The underlying forecasts are subsequently adjusted to facilitate comparison. The Ashley, Granger and Schmalensee (1980) test is then performed to determine whether there is a statistically significant difference between the root mean square errors of the models. The results lend weight to the recent findings of Song (2005) that forecasting models using underlying rates are not systematically inferior to those based on the headline rate. In fact, strong evidence is found that underlying measures produce superior forecasts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
    
Standard measures of prices are often contaminated by transitory shocks. This has prompted economists to suggest the use of measures of underlying inflation to formulate monetary policy and assist in forecasting observed inflation. Recent work has concentrated on modelling large data sets using factor models. In this paper we estimate factors from data sets of disaggregated price indices for European countries. We then assess the forecasting ability of these factor estimates against other measures of underlying inflation built from more traditional methods. The power to forecast headline inflation over horizons of 12 to 18 months is adopted as a valid criterion to assess forecasting. Empirical results for the five largest euro area countries, as well as for the euro area itself, are presented. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

3.
    
This paper discusses the forecasting performance of alternative factor models based on a large panel of quarterly time series for the German economy. One model extracts factors by static principal components analysis; the second model is based on dynamic principal components obtained using frequency domain methods; the third model is based on subspace algorithms for state‐space models. Out‐of‐sample forecasts show that the forecast errors of the factor models are on average smaller than the errors of a simple autoregressive benchmark model. Among the factor models, the dynamic principal component model and the subspace factor model outperform the static factor model in most cases in terms of mean‐squared forecast error. However, the forecast performance depends crucially on the choice of appropriate information criteria for the auxiliary parameters of the models. In the case of misspecification, rankings of forecast performance can change severely. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
    
The paper proposes a simulation‐based approach to multistep probabilistic forecasting, applied for predicting the probability and duration of negative inflation. The essence of this approach is in counting runs simulated from a multivariate distribution representing the probabilistic forecasts, which enters the negative inflation regime. The marginal distributions of forecasts are estimated using the series of past forecast errors, and the joint distribution is obtained by a multivariate copula approach. This technique is applied for estimating the probability of negative inflation in China and its expected duration, with the marginal distributions computed by fitting weighted skew‐normal and two‐piece normal distributions to autoregressive moving average ex post forecast errors and using the multivariate Student t copula.  相似文献   

5.
    
In this paper, we consider the forecasting of domestic food price inflation (DFPI) using global indicators, with emphasis on episodes of macroeconomic turbulence, namely, the Global Financial Crisis (GFC) and the COVID-19 pandemic and its subsequent repercussions. Our monthly dataset covers about two decades for more than a hundred economies. We employ dynamic model averaging (DMA) to tackle both model uncertainty and parameter instability and produce pseudo out-of-sample forecasts. Thus, we are able to focus on the forecasting ability of the global predictors of DFPI before and during the global crises. We find evidence that the DMA specification tends to outperform statistical models frequently used in the literature such as random walks, autoregressive models, and time-varying parameter models, especially during global crises. We also identify the most successful predictors during the crises using their posterior probabilities of inclusion. By comparing the distributions of such probabilities, we find that the international food price inflation is the most useful predictor of DFPI for numerous countries during both crises. Other indicators such as domestic CPI inflation as well as the international inflation of agricultural commodities, fertilizers, and other food categories improved their forecasting ability, particularly during the COVID-19 period.  相似文献   

6.
    
We develop a semi‐structural model for forecasting inflation in the UK in which the New Keynesian Phillips curve (NKPC) is augmented with a time series model for marginal cost. By combining structural and time series elements we hope to reap the benefits of both approaches, namely the relatively better forecasting performance of time series models in the short run and a theory‐consistent economic interpretation of the forecast coming from the structural model. In our model we consider the hybrid version of the NKPC and use an open‐economy measure of marginal cost. The results suggest that our semi‐structural model performs better than a random‐walk forecast and most of the competing models (conventional time series models and strictly structural models) only in the short run (one quarter ahead) but it is outperformed by some of the competing models at medium and long forecast horizons (four and eight quarters ahead). In addition, the open‐economy specification of our semi‐structural model delivers more accurate forecasts than its closed‐economy alternative at all horizons. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
    
The 2021–2022 surge in US inflation was unanticipated by the Survey of Professional Forecasters (SPF) and other macroeconomists and institutions. This study assesses whether nascent deep learning frameworks and methods more accurately project recent core personal consumption expenditures inflation. We create a recurrent neural network (RNN) to forecast long-term inflation, and after training on 60 years of quarterly data, the model outperforms the SPF and projects a spike in inflation similar to that of recent years. We compare the model's performance with and without COVID-19–specific data and discuss some implications of our findings for economic forecasting in global crises.  相似文献   

8.
    
We compare models for forecasting growth and inflation in the enlarged euro area. Forecasts are built from univariate autoregressive and single‐equation models. The analysis is undertaken for both individual countries and EU aggregate variables. Aggregate forecasts are constructed by both employing aggregate variables and by aggregating country‐specific forecasts. Using financial variables for country‐specific forecasts tends to add little to the predictive ability of a simple AR model. However, they do help to predict EU aggregates. Furthermore, forecasts from pooling individual country models usually outperform those of the aggregate itself, particularly for the EU25 grouping. This is particularly interesting from the perspective of the European Central Bank, who require forecasts of economic activity and inflation to formulate appropriate economic policy across the enlarged group. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
    
This paper shows how to extract the density of information shocks from revisions of the Bank of England's inflation density forecasts. An information shock is defined in this paper as a random variable that contains the set of information made available between two consecutive forecasting exercises and that has been incorporated into a revised forecast for a fixed point event. Studying the moments of these information shocks can be useful in understanding how the Bank has changed its assessment of risks surrounding inflation in the light of new information, and how it has modified its forecasts accordingly. The variance of the information shock is interpreted in this paper as a new measure of ex ante inflation uncertainty that measures the uncertainty that the Bank anticipates information perceived in a particular quarter will pose on inflation. A measure of information absorption that indicates the approximate proportion of the information content in a revised forecast that is attributable to information made available since the last forecast release is also proposed.  相似文献   

10.
    
Model uncertainty and recurrent or cyclical structural changes in macroeconomic time series dynamics are substantial challenges to macroeconomic forecasting. This paper discusses a macro variable forecasting methodology that combines model uncertainty and regime switching simultaneously. The proposed predictive regression specification permits both regime switching of the regression parameters and uncertainty about the inclusion of forecasting variables by employing Bayesian model averaging. In an empirical exercise involving quarterly US inflation, we observed that our Bayesian model averaging with regime switching leads to substantial improvements in forecast performance, particularly in the medium horizon (two to four quarters). Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
    
The difficulty in modelling inflation and the significance in discovering the underlying data‐generating process of inflation is expressed in an extensive literature regarding inflation forecasting. In this paper we evaluate nonlinear machine learning and econometric methodologies in forecasting US inflation based on autoregressive and structural models of the term structure. We employ two nonlinear methodologies: the econometric least absolute shrinkage and selection operator (LASSO) and the machine‐learning support vector regression (SVR) method. The SVR has never been used before in inflation forecasting considering the term spread as a regressor. In doing so, we use a long monthly dataset spanning the period 1871:1–2015:3 that covers the entire history of inflation in the US economy. For comparison purposes we also use ordinary least squares regression models as a benchmark. In order to evaluate the contribution of the term spread in inflation forecasting in different time periods, we measure the out‐of‐sample forecasting performance of all models using rolling window regressions. Considering various forecasting horizons, the empirical evidence suggests that the structural models do not outperform the autoregressive ones, regardless of the model's method. Thus we conclude that the term spread models are not more accurate than autoregressive models in inflation forecasting. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
    
A forecasting model for unemployment is constructed that exploits the time series properties of unemployment while satisfying the economic relationships specified by Okun's law and the Phillips curve. In deriving the model, we jointly consider the problem of obtaining estimates of the unobserved potential rate of unemployment consistent with Okun's law and the Phillips curve, and associating the potential rate of unemployment with actual unemployment. The empirical example shows that the model clearly outperforms alternative forecasting procedures typically used to forecast unemployment. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
The period of extraordinary volatility in euro area headline inflation starting in 2007 raised the question whether forecast combination methods can be used to hedge against bad forecast performance of single models during such periods and provide more robust forecasts. We investigate this issue for forecasts from a range of short‐term forecasting models. Our analysis shows that there is considerable variation of the relative performance of the different models over time. To take that into account we suggest employing performance‐based forecast combination methods—in particular, one with more weight on the recent forecast performance. We compare such an approach with equal forecast combination that has been found to outperform more sophisticated forecast combination methods in the past, and investigate whether it can improve forecast accuracy over the single best model. The time‐varying weights assign weights to the economic interpretations of the forecast stemming from different models. We also include a number of benchmark models in our analysis. The combination methods are evaluated for HICP headline inflation and HICP excluding food and energy. We investigate how forecast accuracy of the combination methods differs between pre‐crisis times, the period after the global financial crisis and the full evaluation period, including the global financial crisis with its extraordinary volatility in inflation. Overall, we find that forecast combination helps hedge against bad forecast performance and that performance‐based weighting outperforms simple averaging. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

14.
    
This paper investigates robust model rankings in out‐of‐sample, short‐horizon forecasting. We provide strong evidence that rolling window averaging consistently produces robust model rankings while improving the forecasting performance of both individual models and model averaging. The rolling window averaging outperforms the (ex post) “optimal” window forecasts in more than 50% of the times across all rolling windows.  相似文献   

15.
    
We develop a small model for forecasting inflation for the euro area using quarterly data over the period June 1973 to March 1999. The model is used to provide inflation forecasts from June 1999 to March 2002. We compare the forecasts from our model with those derived from six competing forecasting models, including autoregressions, vector autoregressions and Phillips‐curve based models. A considerable gain in forecasting performance is demonstrated using a relative root mean squared error criterion and the Diebold–Mariano test to make forecast comparisons. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Predicting the future evolution of GDP growth and inflation is a central concern in economics. Forecasts are typically produced either from economic theory‐based models or from simple linear time series models. While a time series model can provide a reasonable benchmark to evaluate the value added of economic theory relative to the pure explanatory power of the past behavior of the variable, recent developments in time series analysis suggest that more sophisticated time series models could provide more serious benchmarks for economic models. In this paper we evaluate whether these complicated time series models can outperform standard linear models for forecasting GDP growth and inflation. We consider a large variety of models and evaluation criteria, using a bootstrap algorithm to evaluate the statistical significance of our results. Our main conclusion is that in general linear time series models can hardly be beaten if they are carefully specified. However, we also identify some important cases where the adoption of a more complicated benchmark can alter the conclusions of economic analyses about the driving forces of GDP growth and inflation. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
    
Neural networks (NNs) are appropriate to use in time series analysis under conditions of unfulfilled assumptions, i.e., non‐normality and nonlinearity. The aim of this paper is to propose means of addressing identified shortcomings with the objective of identifying the NN structure for inflation forecasting. The research is based on a theoretical model that includes the characteristics of demand‐pull and cost‐push inflation; i.e., it uses the labor market, financial and external factors, and lagged inflation variables. It is conducted at the aggregate level of euro area countries from January 1999 to January 2017. Based on the estimated 90 feedforward NNs (FNNs) and 450 Jordan NNs (JNNs), which differ in variable parameters (number of iterations, learning rate, initial weight value intervals, number of hidden neurons, and weight value of the context unit), the mean square error (MSE), and the Akaike Information Criterion (AIC) are calculated for two periods: in‐the‐sample and out‐of‐sample. Ranking NNs simultaneously on both periods according to either MSE or AIC does not lead to the selection of the ‘best’ NN because the optimal NN in‐the‐sample, based on MSE and/or AIC criteria, often has high out‐of‐sample values of both indicators. To achieve the best compromise solution, i.e., to select an optimal NN, the preference ranking organization method for enrichment of evaluations (PROMETHEE) is used. Comparing the optimal FNN and JNN, i.e., FNN(4,5,1) and JNN(4,3,1), it is concluded that under approximately equal conditions, fewer hidden layer neurons are required in JNN than in FNN, confirming that JNN is parsimonious compared to FNN. Moreover, JNN has a better forecasting performance than FNN.  相似文献   

18.
    
Using a structural time‐series model, the forecasting accuracy of a wide range of macroeconomic variables is investigated. Specifically of importance is whether the Henderson moving‐average procedure distorts the underlying time‐series properties of the data for forecasting purposes. Given the weight of attention in the literature to the seasonal adjustment process used by various statistical agencies, this study hopes to address the dearth of literature on ‘trending’ procedures. Forecasts using both the trended and untrended series are generated. The forecasts are then made comparable by ‘detrending’ the trended forecasts, and comparing both series to the realised values. Forecasting accuracy is measured by a suite of common methods, and a test of significance of difference is applied to the respective root mean square errors. It is found that the Henderson procedure does not lead to deterioration in forecasting accuracy in Australian macroeconomic variables on most occasions, though the conclusions are very different between the one‐step‐ahead and multi‐step‐ahead forecasts. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
    
In this paper, we adopt a panel vector autoregressive (PVAR) approach to estimating and forecasting inflation dynamics in four different sectors—industry, services, construction and agriculture—across the euro area and its four largest member states: France, Germany, Italy and Spain. By modelling inflation together with real activity, employment and wages at the sectoral level, we are able to disentangle the role of unit labour costs and profit margins as the fundamental determinants of price dynamics on the supply side. In out‐of‐sample forecast comparisons, the PVAR approach performs well against popular alternatives, especially at a short forecast horizon and relative to standard VAR forecasts based on aggregate economy‐wide data. Over longer forecast horizons, the accuracy of the PVAR model tends to decline relative to that of the univariate alternatives, while it remains high relative to the aggregate VAR forecasts. We show that these findings are driven by the event of the Great Recession. Our qualitative results carry over to a multi‐country extension of the PVAR approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
    
Recent empirical work has considered the prediction of inflation by combining the information in a large number of time series. One such method that has been found to give consistently good results consists of simple equal‐weighted averaging of the forecasts from a large number of different models, each of which is a linear regression relating inflation to a single predictor and a lagged dependent variable. In this paper, I consider using Bayesian model averaging for pseudo out‐of‐sample prediction of US inflation, and find that it generally gives more accurate forecasts than simple equal‐weighted averaging. This superior performance is consistent across subsamples and a number of inflation measures. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号