共查询到20条相似文献,搜索用时 0 毫秒
1.
Tolga Cenesizoglu Qianqiu Liu Jonathan J. Reeves Haifeng Wu 《Journal of forecasting》2016,35(6):528-541
This paper evaluates the accuracy of 1‐month‐ahead systematic (beta) risk forecasts in three return measurement settings; monthly, daily and 30 minutes. It was found that the popular Fama–MacBeth beta from 5 years of monthly returns generates the most accurate beta forecast among estimators based on monthly returns. A realized beta estimator from daily returns over the prior year generates the most accurate beta forecast among estimators based on daily returns. A realized beta estimator from 30‐minute returns over the prior 2 months generates the most accurate beta forecast among estimators based on 30‐minute returns. In environments where low‐, medium‐ and high‐frequency returns are accurately available, beta forecasting with low‐frequency returns are the least accurate and beta forecasting with high‐frequency returns are the most accurate. The improvements in precision of the beta forecasts are demonstrated in portfolio optimization for a targeted beta exposure. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
2.
This article examines the role of market momentum, investor sentiment, and economic fundamentals in forecasting bear stock market. We find strong evidence that bear stock market is predictable by market momentum and investor sentiment in full‐sample and out‐of‐sample analyses. Most economic fundamental variables lose their out‐of‐sample significance once we control for market momentum and investor sentiment. However, the inclusion of economic fundamentals can improve the economic value of the forecasting model in our trading experiments. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
3.
Recent advances in the measurement of beta (systematic return risk) and volatility (total return risk) demonstrate substantial advantages in utilizing high‐frequency return data in a variety of settings. These advances in the measurement of beta and volatility have resulted in improvements in the evaluation of alternative beta and volatility forecasting approaches. In addition, more precise measurement has also led to direct modeling of the time variation of beta and volatility. Both the realized beta and volatility literature have most commonly been modeled with an autoregressive process. In this paper we evaluate constant beta models against autoregressive models of time‐varying realized beta. We find that a constant beta model computed from daily returns over the last 12 months generates the most accurate quarterly forecast of beta and dominates the autoregressive time series forecasts. It also dominates (dramatically) the popular Fama–MacBeth constant beta model, which uses 5 years of monthly returns. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
4.
The existing contradictory findings on the contribution of trading volume to volatility forecasting prompt us to seek new solutions to test the sequential information arrival hypothesis (SIAH). Departing from other empirical analyses that mainly focus on sophisticated testing methods, this research offers new insights into the volume-volatility nexus by decomposing and reconstructing the trading activity into short-run components that typically represent irregular information flow and long-run components that denote extreme information flow in the stock market. We are the first to attempt at incorporating an improved empirical mode decomposition (EMD) method to investigate the volatility forecasting ability of trading volume along with the Heterogeneous Autoregressive (HAR) model. Previous trading volume is used to obtain the decompositions to forecast the future volatility to ensure an ex ante forecast, and both the decomposition and forecasting processes are carried out by the rolling window scheme. Rather than trading volume by itself, the results show that the reconstructed components are also able to significantly improve out-of-sample realized volatility (RV) forecasts. This finding is robust both in one-step ahead and multiple-step ahead forecasting horizons under different estimation windows. We thus fill the gap in studies by (1) extending the literature on the volume-volatility linkage to EMD-HAR analysis and (2) providing a clear view on how trading volume helps improve RV forecasting accuracy. 相似文献
5.
Financial data series are often described as exhibiting two non‐standard time series features. First, variance often changes over time, with alternating phases of high and low volatility. Such behaviour is well captured by ARCH models. Second, long memory may cause a slower decay of the autocorrelation function than would be implied by ARMA models. Fractionally integrated models have been offered as explanations. Recently, the ARFIMA–ARCH model class has been suggested as a way of coping with both phenomena simultaneously. For estimation we implement the bias correction of Cox and Reid ( 1987 ). For daily data on the Swiss 1‐month Euromarket interest rate during the period 1986–1989, the ARFIMA–ARCH (5,d,2/4) model with non‐integer d is selected by AIC. Model‐based out‐of‐sample forecasts for the mean are better than predictions based on conditionally homoscedastic white noise only for longer horizons (τ > 40). Regarding volatility forecasts, however, the selected ARFIMA–ARCH models dominate. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
6.
Through empirical research, it is found that the traditional autoregressive integrated moving average (ARIMA) model has a large deviation for the forecasting of high-frequency financial time series. With the improvement in storage capacity and computing power of high-frequency financial time series, this paper combines the traditional ARIMA model with the deep learning model to forecast high-frequency financial time series. It not only preserves the theoretical basis of the traditional model and characterizes the linear relationship, but also can characterize the nonlinear relationship of the error term according to the deep learning model. The empirical study of Monte Carlo numerical simulation and CSI 300 index in China show that, compared with ARIMA, support vector machine (SVM), long short-term memory (LSTM) and ARIMA-SVM models, the improved ARIMA model based on LSTM not only improves the forecasting accuracy of the single ARIMA model in both fitting and forecasting, but also reduces the computational complexity of only a single deep learning model. The improved ARIMA model based on deep learning not only enriches the models for the forecasting of time series, but also provides effective tools for high-frequency strategy design to reduce the investment risks of stock index. 相似文献
7.
In this paper, we introduce the functional coefficient to heterogeneous autoregressive realized volatility (HAR‐RV) models to make the parameters change over time. A nonparametric statistic is developed to perform a specification test. The simulation results show that our test displays reliable size and good power. Using the proposed test, we find a significant time variation property of coefficients to the HAR‐RV models. Time‐varying parameter (TVP) models can significantly outperform their constant‐coefficient counterparts for longer forecasting horizons. The predictive ability of TVP models can be improved by accounting for VIX information. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
8.
This intention of this paper is to empirically forecast the daily betas of a few European banks by means of four generalized autoregressive conditional heteroscedasticity (GARCH) models and the Kalman filter method during the pre‐global financial crisis period and the crisis period. The four GARCH models employed are BEKK GARCH, DCC GARCH, DCC‐MIDAS GARCH and Gaussian‐copula GARCH. The data consist of daily stock prices from 2001 to 2013 from two large banks each from Austria, Belgium, Greece, Holland, Ireland, Italy, Portugal and Spain. We apply the rolling forecasting method and the model confidence sets (MCS) to compare the daily forecasting ability of the five models during one month of the pre‐crisis (January 2007) and the crisis (January 2013) periods. Based on the MCS results, the BEKK proves the best model in the January 2007 period, and the Kalman filter overly outperforms the other models during the January 2013 period. Results have implications regarding the choice of model during different periods by practitioners and academics. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
9.
This paper presents gamma stochastic volatility models and investigates its distributional and time series properties. The parameter estimators obtained by the method of moments are shown analytically to be consistent and asymptotically normal. The simulation results indicate that the estimators behave well. The in‐sample analysis shows that return models with gamma autoregressive stochastic volatility processes capture the leptokurtic nature of return distributions and the slowly decaying autocorrelation functions of squared stock index returns for the USA and UK. In comparison with GARCH and EGARCH models, the gamma autoregressive model picks up the persistence in volatility for the US and UK index returns but not the volatility persistence for the Canadian and Japanese index returns. The out‐of‐sample analysis indicates that the gamma autoregressive model has a superior volatility forecasting performance compared to GARCH and EGARCH models. Copyright © 2006 John Wiley _ Sons, Ltd. 相似文献
10.
Matteo Bonato;Oguzhan Cepni;Rangan Gupta;Christian Pierdzioch; 《Journal of forecasting》2024,43(2):456-472
We analyze the predictive value of (the surprise component of) state-level business applications, as a proxy of local investor sentiment, for the state-level realized US stock-market volatility. We use high-frequency data for the period from September 2011 to October 2021 to compute realized volatility. Using an extended version of the popular heterogeneous autoregressive realized volatility model and accounting for the possibility that users of forecasts have an asymmetric loss function, we show that business applications tend to have predictive value for realized state-level stock-market volatility, as well as for upside (“good”) and downside (“bad”) realized volatility, for users of forecasts who suffer a larger loss from an underprediction of realized volatility than from an overprediction of the same (absolute) seize, after controlling for realized moments (realized skewness, realized kurtosis, realized jumps, and realized tail risks). We also highlight that the COVID-19 period is a major driver of our empirical results. 相似文献
11.
The versatility of the one‐dimensional discrete wavelet analysis combined with wavelet and Burg extensions for forecasting financial times series with distinctive properties is illustrated with market data. Any time series of financial assets may be decomposed into simpler signals called approximations and details in the framework of the one‐dimensional discrete wavelet analysis. The simplified signals are recomposed after extension. The final output is the forecasted time series which is compared to observed data. Results show the pertinence of adding spectrum analysis to the battery of tools used by econometricians and quantitative analysts for the forecast of economic or financial time series. 相似文献
12.
In this paper, we present two neural‐network‐based techniques: an adaptive evolutionary multilayer perceptron (aDEMLP) and an adaptive evolutionary wavelet neural network (aDEWNN). The two models are applied to the task of forecasting and trading the SPDR Dow Jones Industrial Average (DIA), the iShares NYSE Composite Index Fund (NYC) and the SPDR S&P 500 (SPY) exchange‐traded funds (ETFs). We benchmark their performance against two traditional MLP and WNN architectures, a smooth transition autoregressive model (STAR), a moving average convergence/divergence model (MACD) and a random walk model. We show that the proposed architectures present superior forecasting and trading performance compared to the benchmarks and are free from the limitations of the traditional neural networks such as the data‐snooping bias and the time‐consuming and biased processes involved in optimizing their parameters. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
13.
We examine the potential gains of using exchange rate forecast models and forecast combination methods in the management of currency portfolios for three exchange rates: the euro versus the US dollar, the British pound, and the Japanese yen. We use a battery of econometric specifications to evaluate whether optimal currency portfolios implied by trading strategies based on exchange rate forecasts outperform single currencies and the equally weighted portfolio. We assess the differences in profitability of optimal currency portfolios for different types of investor preferences, two trading strategies, mean squared error‐based composite forecasts, and different forecast horizons. Our results indicate that there are clear benefits of integrating exchange rate forecasts from state‐of‐the‐art econometric models in currency portfolios. These benefits vary across investor preferences and prediction horizons but are rather similar across trading strategies. 相似文献
14.
We present a cointegration analysis on the triangle (USD–DEM, USD–JPY, DEM–JPY) of foreign exchange rates using intra‐day data. A vector autoregressive model is estimated and evaluated in terms of out‐of‐sample forecast accuracy measures. Its economic value is measured on the basis of trading strategies that account for transaction costs. We show that the typical seasonal volatility in high‐frequency data can be accounted for by transforming the underlying time scale. Results are presented for the original and the modified time scales. We find that utilizing the cointegration relation among the exchange rates and the time scale transformation improves forecasting results. Copyright © 2002 John Wiley & Sons, Ltd. 相似文献
15.
In this paper, we present a comparison between the forecasting performances of the normalization and variance stabilization method (NoVaS) and the GARCH(1,1), EGARCH(1,1) and GJR‐GARCH(1,1) models. Hence the aim of this study is to compare the out‐of‐sample forecasting performances of the models used throughout the study and to show that the NoVaS method is better than GARCH(1,1)‐type models in the context of out‐of sample forecasting performance. We study the out‐of‐sample forecasting performances of GARCH(1,1)‐type models and NoVaS method based on generalized error distribution, unlike normal and Student's t‐distribution. Also, what makes the study different is the use of the return series, calculated logarithmically and arithmetically in terms of forecasting performance. For comparing the out‐of‐sample forecasting performances, we focused on different datasets, such as S&P 500, logarithmic and arithmetic B?ST 100 return series. The key result of our analysis is that the NoVaS method performs better out‐of‐sample forecasting performance than GARCH(1,1)‐type models. The result can offer useful guidance in model building for out‐of‐sample forecasting purposes, aimed at improving forecasting accuracy. 相似文献
16.
Md Lutfur Rahman Mahbub Khan Samuel A. Vigne Gazi Salah Uddin 《Journal of forecasting》2021,40(1):162-186
This paper explains cross‐market variations in the degree of return predictability using the extreme bounds analysis (EBA). The EBA addresses model uncertainty in identifying robust determinant(s) of cross‐sectional return predictability. Additionally, the paper develops two profitable trading strategies based on return predictability evidence. The result reveals that among the 13 determinants of the cross‐sectional variation of return predictability, only value of stock traded (a measure of liquidity) is found to have robust explanatory power by Leamer's (1985) EBA. However, Sala‐i‐Martin's (1997) EBA reports that value of stock traded, gross domestic product (GDP) per capita, level of information and communication technology (ICT) development, governance quality, and corruption perception are robust determinants. We further find that a strategy of buying (selling) aggregate market portfolios of the countries with the highest positive (negative) return predictability statistic in the past 24 months generates statistically significant positive returns in the subsequent 3 to 12 months. In the individual country level, a trading rule of buying (selling) the respective country's aggregate market portfolio, when the return predictability statistic turns out positive (negative), outperforms the conventional buy‐and‐hold strategy for many countries. 相似文献
17.
This paper concentrates on quantifying the behavioral aspects of systemic risk by using a novel approach based on entropy. More specifically, we study aggregate market expectations and the predictability of systemic risk before and during the financial crisis in 2008. Two underlying signals for estimating entropic risk measures are considered: (i) skewness premium of deepest out‐of‐the‐money options; and (ii) implied volatility ratio in regard to deepest out‐of‐the‐money options. The findings confirm the predictive and contemporaneous usefulness of our entropy setting in market risk management. The degree of predictability is closely linked to both the type of entropy and the nature of the underlying signal. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
18.
Paul Newbold 《Journal of forecasting》1983,2(1):23-35
This paper reviews the approach to forecasting based on the construction of ARIMA time series models. Recent developments in this area are surveyed, and the approach is related to other forecasting methodologies. 相似文献
19.
Rob J. Hyndman 《Journal of forecasting》1995,14(5):431-441
Forecast regions are a common way to summarize forecast accuracy. They usually consist of an interval symmetric about the forecast mean. However, symmetric intervals may not be appropriate forecast regions when the forecast density is not symmetric and unimodal. With many modern time series models, such as those which are non-linear or have non-normal errors, the forecast densities are often asymmetric or multimodal. The problem of obtaining forecast regions in such cases is considered and it is proposed that highest-density forecast regions be used. A graphical method for presenting the results is discussed. 相似文献
20.
Henri Nyberg 《Journal of forecasting》2018,37(1):1-15
This paper introduces a regime switching vector autoregressive model with time‐varying regime probabilities, where the regime switching dynamics is described by an observable binary response variable predicted simultaneously with the variables subject to regime changes. Dependence on the observed binary variable distinguishes the model from various previously proposed multivariate regime switching models, facilitating a handy simulation‐based multistep forecasting method. An empirical application shows a strong bidirectional predictive linkage between US interest rates and NBER business cycle recession and expansion periods. Due to the predictability of the business cycle regimes, the proposed model yields superior out‐of‐sample forecasts of the US short‐term interest rate and the term spread compared with the linear and nonlinear vector autoregressive (VAR) models, including the Markov switching VAR model. 相似文献