首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用朝阳路潮汐车道实施前后的实地交通流调查数据,对北京市朝阳路潮汐车道的实施效果进了评价分析。在定性分析朝阳路潮汐车道可实施性的基础上,从潮汐车道设置方案、实施前后平均行驶车速和车流量变化等方面,综合评价了北京市朝阳路潮汐车道的实施对朝阳路晚高峰期间交通流的影响,以及对周边功能相近道路交通状况的影响。研究结果表明:朝阳路潮汐车道实施后,出城方向的平均车速变化不明显,而周边道路出城方向的平均车速有明显的提高;出城方向车流量增加明显,说明朝阳路对周边出城道路的车流量产生了明显吸引作用;朝阳路潮汐车道的实施缓解了晚高峰期间双向交通的不平衡性,实现了出城车流量的均衡分配和潮汐车道资源充分利用的目的。  相似文献   

2.
在澳大利亚著名城市悉尼港口, 有一座造型美观的大桥,这就是悉尼海港大桥,简称悉尼大桥。从远处望去,这座大桥形同一个衣架,因此它的别名叫:“大衣架”。它于一九二三年七月兴工,一九三二年三月建成,花了八年多时间。桥虽不算很长,但跨度在世界上却不多见。它是悉尼很重要的一座建筑物,也是南半球的一座大桥。大桥高出海平面五十九米,宽四十九米。上有双轨铁路、行人道、自行车道和八条汽车道。在上下班时,无数小汽车组成一条望不到尽头的长蛇,在大桥上蠕动。据统计,一九七六年四月十五日那一天,通过大桥的车辆就有十九万七千零七  相似文献   

3.
针对十车道高速公路复杂的交通环境,考虑交通量及货车比例双重因素影响,采取全面试验设计方法,利用VISSIM交通仿真软件对4种车道管理方案开展仿真模拟研究,以平均车速、路段通行能力、冲突数为评价指标,采用主成分分析法构建车道管理方案评价方法,基于多组合交通条件下的车道管理方案评分提出十车道高速公路不同车道管理方案适用条件。结果表明:针对十车道高速公路,当交通量≤1 000 pcu/(h·车道数)时,宜在左侧一条车道禁行货车;当交通量>1 000 pcu/(h·车道数)且货车比例≤30%时,宜在左侧三条车道禁行货车;当交通量>1 000 pcu/(h·车道数)且货车比例>30%时,宜在左侧两条车道禁行货车。  相似文献   

4.
基于多信息融合优化的鲁棒性车道检测算法   总被引:2,自引:0,他引:2  
为了提高复杂环境下车道线检测的鲁棒性,提出一种基于多特征信息融合优化的鲁棒性车道线检测算法.首先构建了基于二次曲线空间道路模型图像中左右车道线数学模型;然后融合像素梯度值、梯度方向、像素灰度以及车道线结构等多特征信息,构造后验概率函数;最后采用基于免疫克隆策略的改进粒子群优化算法优化车道线模型参数,实现车道线提取.对实际道路图像的实验结果表明,引入多特征信息后,在道路中存在阴影、车辆和道路标记等干扰因素,以及车道线模糊、对比度较低的情况下,该算法也能快速准确地提取车道线,具有很强的鲁棒性.  相似文献   

5.
基于8自由度的驾驶模拟器研究了地下道路车道宽度、车道位置、侧向净宽对驾驶行为的影响.受试者在一条单向三车道的地下道路场景中进行了试验.试验结果表明车道宽度和侧向净宽对车速、偏移及主观感知都有影响,而车道宽度的影响更为显著.不同车道上,驾驶行为表现出与驾驶人的主观感知不一致.基于横向偏移状态分析了不同条件下的行车安全性,并为地下道路设计车速、车道宽度、限速、车道组合等方面提出了建议.  相似文献   

6.
提出了一种基于视觉和毫米波雷达的车道级定位方法.利用机器视觉方法,通过摄像头检测车道线,并用圆曲线模型进行拟合;采用毫米波雷达检测道路两旁的静止护栏边沿,以获取道路的边界信息,采用低精度全球定位系统(GPS)获取当前道路信息,并对比车道线与道路边沿的相对位置关系,从而进行车道级定位.结果表明,针对中、高速城市道路及高速公路场景,所提出的车道级定位方法的定位效果较好.  相似文献   

7.
在中国不同省份收集了20个道路断面的计重收费数据,并在25条道路上进行现场交通摄像与数据读取,分析道路的方向分布系数、车道分布系数及其影响因素.结果表明,方向分布系数一般为50%~60%,而重交通方向当量轴载作用次数在总作用次数中所占的比例为50%~85%.当两个方向交通荷载特性存在明显区别时,应对两个方向的路面结构分别进行设计.交通行驶方式对车道分布系数有明显的影响.对于双向两车道道路,高速公路的车道分布系数较大;而对于双向三车道道路,非高速公路的车道分布系数较大.分别对高速公路和其他公路提出了车道分布系数的推荐值,供路面结构分析和设计之用.  相似文献   

8.
车道线的检测技术是自动驾驶汽车中的重要技术。为了提高车道线的检测能力,提出了一种改进RANSAC的车道线识别方法。通过设置感兴趣区域提取路面图像并进行缩放;把彩色图像的RGB通道按5∶5∶0的权重转化成灰度图像;再用速度更快的积分图法对图像进行自适应二值化;接下来进行一系列的形态学处理来减小噪声;提取Harris角点作为拟合数据点;最后,运用改进了选择初始点和删除外点的RANSAC(random sample consensus)的方法,根据数据点估计车道线参数。实验结果表明,该算法适合多种道路环境下的车道线检测,具有较好的鲁棒性和实时性。  相似文献   

9.
《奇闻怪事》2013,(7):51
韩国首都首尔有一座著名的麻浦大桥,这座桥全长1600米,横跨汉江,桥梁两端分别连接麻浦区和永登浦区,是首尔重要的交通枢纽。但是,2008年之后,这座桥却逐渐有了一个令人惊悸的称号——"自杀之桥"。2008年3月,一名失业的中年人从麻浦大桥上纵身一跃,落入了水流湍急的汉江水中。由于麻浦大桥离水面有10米多的距离,这位中年人甚至没有激起太大的水花,便迅速消失在了江水之中,  相似文献   

10.
城市外围区干道朝夕交通流通常呈现出不均衡现象,上午进城交通量大,下午出城交通量大。而以往很多这样类型的干道交叉口,采用交通流对称放行方式不能满足需求,增加延误,通行效率降低。改变以往采用对称相位的设置方法,设计交叉口单口放行的方法,加之以绿波协调控制系统,使得道路资源得到充分利用,提高道路的通行率。以昆明市白龙路朝夕交通流量不均衡现象为例,结合信号配时优化即交叉口交通流单口放行方法,设计不同时段的绿波协调控制系统,通过TransModeler进行交通仿真,仿真结果表明双向非对称的交通流干道采用单口放行并加之以绿波控制对交叉口的延误大大减少,提高通行效率。  相似文献   

11.
通过职业教育引导农民进城务工,明确城市准入政策中职业教育的地位和作用,将无序流动变为有序流动,提高进城青年农民素质并拉动农村教育的普及,是一条有中国特色的城市化道路。  相似文献   

12.
高精度地图是实现自动驾驶技术必不可少的基础设施,车道线是高精度地图车道级路网的重要组成部分。以往高精度地图的车道线检测多基于车载摄像头数据,存在成像范围有限、需要透视变换和多次拼接造成的效率问题。基于无人机航拍影像,采用U-Net网络识别道路区域,过滤非道路区域噪声,通过HSL颜色变换和Sobel算子分别计算车道线颜色和边缘梯度特征,使用Otsu算法自动确定特征分割阈值获得二值化车道线特征图,通过局部最大值算法确定滑动窗口的初始位置,最后借助滑动窗口算法和多项式检测拟合车道线。实验结果表明,在保证一定检测精度的前提下,单条车道线检测长度超过了百米,道路检测效率达到25.2 m/s,对比于地面影像的检测算法具有明显的效率优势。  相似文献   

13.
基于机器视觉和图像处理的夜间车道线检测一直是该领域的研究难题,即使是近年的深度学习方法,检测精度只能达到50%左右.为此,研究了一种新的算法,根据车道线的特点和车辆的行驶速度,将视频中多幅图像融合到一幅图像中;利用图像的特点,在区域合并中识别出有效的车道线检测区域;将有效区域分割成新的图像后,采用基于Frangi和Hessian矩阵的算法对图像进行平滑和增强;为了提取车道线的特征点,提出了一种新的分数阶微分模板进行车道线特征点检测,该算法根据车道线在图像中可能的位置,从4个方向检测特征点;在检测出候选点后,应用递归Hough直线变换得到候选车道线,为了确定最终的车道线,一条车道线的角度应介于25°~65°之间,而另一条车道线的角度应介于115°~155°之间,否则,通过降低线点数的阈值继续进行Hough直线检测,直到获得两条车道线为止.通过对数百幅夜间车道线图像的测试,并与深度学习方法和传统的图像分割算法进行比较,新算法的检测准确率可达70%.  相似文献   

14.
基于机器视觉的车道偏离报警系统   总被引:2,自引:0,他引:2  
为了提高基于机器视觉车道偏离报警系统的可靠性和实用性,对基于视觉的车道偏离报警系统各个环节的优化做了研究.介绍了基于视觉的车道偏离报警系统的构成和工作原理,提出了各个环节的实现方法.通过选择直线车道数学模型和限定车道提取的感兴趣区域(ROI)以简化系统复杂度和提高检测精度.首先使用方向可调滤波器进行图像预处理,然后使用Kalman预测器和距离判别法得到车道线有效点集,最后采用抗干扰能力强的Hough变换得出车道线参数.研究并采纳了一种无需对摄像头标定的车道偏离决策方法,通过综合道路图像中2条车道线的斜率值来判断车辆偏离车道的程度.实验表明,该系统具有良好的车道识别能力以及准确的偏离决策能力,能够满足高速公路环境车道偏离报警要求.  相似文献   

15.
为研究车道缩减对驾驶行为的影响效果及其形成机理,建立虚拟道路仿真环境并通过驾驶模拟系统及试验,研究车道宽度、转弯方向、缩减方式、初始位置等多个控制变量对驾驶行为特征的作用及交互影响,组织试验并利用驾驶模拟系统采集的驾驶行为指标(包括车速、横向位置),并通过计算获取其标准差,应用多元数据交互分析方法对试验数据进行提取与单因素、多因素交互分析,以弥补以往研究中单因素分析结果的片面性。结果表明:缩减车道宽度能使运行车速出现显著下降;然而,车道宽度缩减对驾驶横向位置也有显著的负效应;与双侧车道缩减相比,通过加宽道路中心线的单侧车道缩减对于减少车辆横向偏移具有显著影响;转弯方向对于侧向偏移量也有影响,右转时与左转时相比,横向偏移较小;转弯方向及车道宽度对横向偏移存在交互影响,右转弯时易向左偏移。车道偏移值的离散程度受到缩减方式、车道宽度、缩减方式与车道宽度交互作用、车道宽度与转弯方向交互作用的影响。此外,由于车道缩减的初始位置及弯道方向对驾驶人的表现并没有显著影响,说明心理负荷理论可能为车道缩减效应提供了更为合理的解释。该研究有助于理解弯道驾驶特征产生机理及其与多因素之间的关系,也为弯道处控制车速及降低横向偏离位置的工程措施提供理论依据。  相似文献   

16.
采用实车测速实验,在上海市8条城市地下道路中进行车速数据的采集,并选取156个典型线形路段,研究地下道路中车速的分布特征及运行车速.通过多元逐步线性回归建立城市地下道路运行车速预测模型,模型自变量包括车道宽度、纵坡、车道数、限速、分合流、洞口等.结果表明,预测模型的拟合效果良好,通过预测值和实测值的比较验证了模型的有效性.同时发现限速对城市地下道路中运行车速的影响很小.运行车速预测模型适用于设计车速在40~80km·h-1,双向4~8车道的城市地下道路中.  相似文献   

17.
基于机器视觉和图像处理的夜间车道线检测一直是该领域的研究难题,即使是近年的深度学习方法,检测精度只能达到50%左右.为此,研究了一种新的算法,根据车道线的特点和车辆的行驶速度,将视频中多幅图像融合到一幅图像中;利用图像的特点,在区域合并中识别出有效的车道线检测区域;将有效区域分割成新的图像后,采用基于Frangi和Hessian矩阵的算法对图像进行平滑和增强;为了提取车道线的特征点,提出了一种新的分数阶微分模板进行车道线特征点检测,该算法根据车道线在图像中可能的位置,从4个方向检测特征点;在检测出候选点后,应用递归Hough直线变换得到候选车道线,为了确定最终的车道线,一条车道线的角度应介于25°~65°之间,而另一条车道线的角度应介于115°~155°之间,否则,通过降低线点数的阈值继续进行Hough直线检测,直到获得两条车道线为止.通过对数百幅夜间车道线图像的测试,并与深度学习方法和传统的图像分割算法进行比较,新算法的检测准确率可达70%.  相似文献   

18.
城市道路自由车速与车道宽度关联性分析   总被引:4,自引:0,他引:4  
通过对城市道路路段及交叉口出口道自由车速的特性分析,获得自由车速与车道宽度的关联性.选取杭州市交通设施相似、车道宽度不同的9条道路进行车速调查,并采用视频检测及图像识别技术提取车速数据.经数据分析得出,路段及交叉口出口的自由车速服从正态分布,且特征车速随车道宽度增加有上升趋势;建立车道宽度对车速离散情况影响模型,得出交叉口出口及路段车速离散情况随车道宽度的变化趋势.研究结论说明,合理设置道路车道宽度有利于限制车速和提高道路安全性,还可以为城市交通流建模及城市交通管理提供依据.  相似文献   

19.
基于摄像机模型的运动车辆车道偏离检测   总被引:2,自引:0,他引:2  
针对车道偏离检测中较难解决的车载摄像机标定问题,从分析摄像机成像模型入手,根据图像中3条或3条以上车道线的消失点位置以及车道线斜率关系,在道路现场调整摄像机安装位置,以实现对摄像机外部参数的直接设定,从而避开了繁琐的摄像机参数标定过程.同时,推导出图像内车道线斜率比与车道偏离程度的简单函数关系,该函数与摄像机内外参数无关.因此,行车过程中只需测量图像中车道线的斜率,即可计算出车辆当前的车道偏离量.现场试验结果表明,在车辆直行时采用该方法测得的车道偏离率与手工实测结果相比,其相对误差小于5%,具备了较高的检测精度.  相似文献   

20.
考虑无公交站台、有非港湾式公交站台和有港湾式公交站台这三种类型的城市公交道路,构建基于安全距离跟车行为的双车道元胞自动机模型。根据南京市区道路上各类车辆的实际比例,仿真分析机动车速度与道路空间占有率之间的关系,并以非出租小汽车限行比例为20%和40%为例,研究机动车限行对公交路段车辆行驶速度的影响。结果表明,当道路空间占有率在0.2以下时,小汽车限行对机动车行驶速度的影响较小;当道路空间占有率高于0.2时,小汽车限行后无公交站台道路和港湾式公交站台道路上的机动车速度提升幅度较大,而非港湾式公交站台道路上车速提升幅度远不如前两者显著,因此城市公交路段应尽量采用港湾式公交站台。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号