首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular breeding of viruses   总被引:4,自引:0,他引:4  
Genetic recombination is a major force driving the evolution of many viruses. Recombination between two copackaged retroviral genomes may occur at rates as high as 40% per replication cycle. This enables genetic information to be shuffled rapidly, leading to recombinants with new patterns of mutations and phenotypes. The in vitro process of DNA shuffling (molecular breeding) mimics this mechanism on a vastly parallel and accelerated scale. Multiple homologous parental sequences are recombined in parallel, leading to a diverse library of complex recombinants from which desired improvements can be selected. Different proteins and enzymes have been improved using DNA shuffling. We report here the first application of molecular breeding to viruses. A single round of shuffling envelope sequences from six murine leukaemia viruses (MLV) followed by selection yielded a chimaeric clone with a completely new tropism for Chinese Hamster Ovary (CHOK1) cells. The composition and properties of the selected clone indicated that this particular permutation of parental sequences cannot be readily attained by natural retroviral recombination. This example demonstrates that molecular breeding can enhance the inherently high evolutionary potential of retroviruses to obtain desired phenotypes. It can be an effective tool, when information is limited, to optimize viruses for gene therapy and vaccine applications when multiple complex functions must be simultaneously balanced.  相似文献   

2.
Endometriosis is a common gynecological disease associated with pelvic pain and subfertility. We conducted a genome-wide association study (GWAS) in 3,194 individuals with surgically confirmed endometriosis (cases) and 7,060 controls from Australia and the UK. Polygenic predictive modeling showed significantly increased genetic loading among 1,364 cases with moderate to severe endometriosis. The strongest association signal was on 7p15.2 (rs12700667) for 'all' endometriosis (P = 2.6 × 10??, odds ratio (OR) = 1.22, 95% CI 1.13-1.32) and for moderate to severe disease (P = 1.5 × 10??, OR = 1.38, 95% CI 1.24-1.53). We replicated rs12700667 in an independent cohort from the United States of 2,392 self-reported, surgically confirmed endometriosis cases and 2,271 controls (P = 1.2 × 10?3, OR = 1.17, 95% CI 1.06-1.28), resulting in a genome-wide significant P value of 1.4 × 10?? (OR = 1.20, 95% CI 1.13-1.27) for 'all' endometriosis in our combined datasets of 5,586 cases and 9,331 controls. rs12700667 is located in an intergenic region upstream of the plausible candidate genes NFE2L3 and HOXA10.  相似文献   

3.
We performed a genome-wide association study of melanoma in a discovery cohort of 2,168 Australian individuals with melanoma and 4,387 control individuals. In this discovery phase, we confirm several previously characterized melanoma-associated loci at MC1R, ASIP and MTAP-CDKN2A. We selected variants at nine loci for replication in three independent case-control studies (Europe: 2,804 subjects with melanoma, 7,618 control subjects; United States 1: 1,804 subjects with melanoma, 1,026 control subjects; United States 2: 585 subjects with melanoma, 6,500 control subjects). The combined meta-analysis of all case-control studies identified a new susceptibility locus at 1q21.3 (rs7412746, P = 9.0 × 10(-11), OR in combined replication cohorts of 0.89 (95% CI 0.85-0.95)). We also show evidence suggesting that melanoma associates with 1q42.12 (rs3219090, P = 9.3 × 10(-8)). The associated variants at the 1q21.3 locus span a region with ten genes, and plausible candidate genes for melanoma susceptibility include ARNT and SETDB1. Variants at the 1q21.3 locus do not seem to be associated with human pigmentation or measures of nevus density.  相似文献   

4.
We extended our previous genome-wide association study for psoriasis with a multistage replication study including 8,312 individuals with psoriasis (cases) and 12,919 controls from China as well as 3,293 cases and 4,188 controls from Germany and the United States and 254 nuclear families from the United States. We identified six new susceptibility loci associated with psoriasis in the Chinese study containing the candidate genes ERAP1, PTTG1, CSMD1, GJB2, SERPINB8 and ZNF816A (combined P < 5 × 10??) and replicated one locus, 5q33.1 (TNIP1-ANXA6), previously reported (combined P = 3.8 × 10?21) in the European studies. Two of these loci showed evidence for association in the German study at ZNF816A and GJB2 with P = 3.6 × 10?3 and P = 7.9 × 10?3, respectively. ERAP1 and ZNF816A were associated with type 1 (early onset) psoriasis in the Chinese Han population (test for heterogeneity P = 6.5 × 10?3 and P = 1.5 × 10?3, respectively). Comparisons with the results of previous GWAS of psoriasis highlight the heterogeneity of disease susceptibility between the Chinese and European populations. Our study identifies new genetic susceptibility factors and suggests new biological pathways in psoriasis.  相似文献   

5.
Recombination rates seem to vary extensively along the human genome. Pedigree analysis suggests that rates vary by an order of magnitude when measured at the megabase scale, and at a finer scale, sperm typing studies point to the existence of recombination hotspots. These are short regions (1-2 kb) in which recombination rates are 10-1,000 times higher than the background rate. Less is known about how recombination rates change over time. Here we determined to what degree recombination rates are conserved among closely related species by estimating recombination rates from 14 Mb of linkage disequilibrium data in central chimpanzee and human populations. The results suggest that recombination hotspots are not conserved between the two species and that recombination rates in larger (50 kb) genomic regions are only weakly conserved. Therefore, the recombination landscape has changed markedly between the two species.  相似文献   

6.
No detectable rearrangements involving chromosome 4p16.3 have been observed in patients with Huntington's disease (HD). New mutations for HD could involve structural alterations which might aid the localization of the defective gene. We have reinvestigated a well documented sporadic case of HD. DNA haplotyping with markers between D4S10 and the telomeric locus D4S141 reveals a recombination event in one chromosome of the sporadic HD patient. The site of recombination maps within a 50 kilobase (kb) region, about 700 kb from the 4p telomere. Based on the extremely low HD mutation rate and significantly decreased recombination in the distal region of 4p, we hypothesize a direct link between the site of the recombination and HD in this patient.  相似文献   

7.
In mammals, loss of APC/Apc gatekeeper function initiates intestinal tumorigenesis. Several different mechanisms have been shown or proposed to mediate functional loss of APC/Apc: mutation in APC/Apc, non-disjunction, homologous somatic recombination and epigenetic silencing. The demonstration that, in the C57BL/6 (B6) Apc(Min/+) mouse model of inherited intestinal cancer, loss of Apc function can occur by loss of heterozygosity (LOH) through somatic recombination between homologs presents an opportunity to search for polymorphisms in the homologous somatic recombination pathway. We report that the Robertsonian translocation Rb(7.18)9Lub (Rb9) suppresses the multiplicity of intestinal adenomas in this mouse model. As the copy number of Rb9 increases, the association with the interphase nucleolus of the rDNA repeats centromeric to the Apc locus on Chromosome 18 is increasingly disrupted. Our analysis shows that homologous somatic recombination is the principal pathway for LOH in adenomas in B6 Apc(Min/+) mice. These studies provide additional evidence that neoplastic growth can initiate in the complete absence of canonical genomic instability.  相似文献   

8.
Developmental dyslexia is defined as a specific and significant impairment in reading ability that cannot be explained by deficits in intelligence, learning opportunity, motivation or sensory acuity. It is one of the most frequently diagnosed disorders in childhood, representing a major educational and social problem. It is well established that dyslexia is a significantly heritable trait with a neurobiological basis. The etiological mechanisms remain elusive, however, despite being the focus of intensive multidisciplinary research. All attempts to map quantitative-trait loci (QTLs) influencing dyslexia susceptibility have targeted specific chromosomal regions, so that inferences regarding genetic etiology have been made on the basis of very limited information. Here we present the first two complete QTL-based genome-wide scans for this trait, in large samples of families from the United Kingdom and United States. Using single-point analysis, linkage to marker D18S53 was independently identified as being one of the most significant results of the genome in each scan (P< or =0.0004 for single word-reading ability in each family sample). Multipoint analysis gave increased evidence of 18p11.2 linkage for single-word reading, yielding top empirical P values of 0.00001 (UK) and 0.0004 (US). Measures related to phonological and orthographic processing also showed linkage at this locus. We replicated linkage to 18p11.2 in a third independent sample of families (from the UK), in which the strongest evidence came from a phoneme-awareness measure (most significant P value=0.00004). A combined analysis of all UK families confirmed that this newly discovered 18p QTL is probably a general risk factor for dyslexia, influencing several reading-related processes. This is the first report of QTL-based genome-wide scanning for a human cognitive trait.  相似文献   

9.
The choice of which population to study in the mapping of common disease genes may be critical. Isolated founder populations, such as that found in Finland, have already proved extremely useful for mapping the genes for specific rare monogenic disorders and are being used in attempts to map the genes underlying common, complex diseases. But simulation results suggest that, under the common disease-common variant hypothesis, most isolated populations will prove no more useful for linkage disequilibrium (LD) mapping of common disease genes than large outbred populations. There is very little empirical data to either support or refute this conclusion at present. Therefore, we evaluated LD between 21 common microsatellite polymorphisms on chromosome 18q21 in 2 genetic isolates (Finland and Sardinia) and compared the results with those observed in two mixed populations (United Kingdom and United States of America). Mean levels of LD were similar across all four populations. Our results provide empirical support for the expectation that genetic isolates like Finland and Sardinia will not prove significantly more valuable than general populations for LD mapping of common variants underlying complex disease.  相似文献   

10.
We conducted a genome-wide SNP association study on prostate cancer on over 23,000 Icelanders, followed by a replication study including over 15,500 individuals from Europe and the United States. Two newly identified variants were shown to be associated with prostate cancer: rs5945572 on Xp11.22 and rs721048 on 2p15 (odds ratios (OR) = 1.23 and 1.15; P = 3.9 x 10(-13) and 7.7 x 10(-9), respectively). The 2p15 variant shows a significantly stronger association with more aggressive, rather than less aggressive, forms of the disease.  相似文献   

11.
Several large-scale studies of human genetic variation have provided insights into processes such as recombination that have shaped human diversity. However, regions such as low-copy repeats (LCRs) have proven difficult to characterize, hindering efforts to understand the processes operating in these regions. We present a detailed study of genetic variation and underlying recombination processes in two copies of an LCR (NF1REPa and NF1REPc) on chromosome 17 involved in the generation of NF1 microdeletions and in a third copy (REP19) on chromosome 19 from which the others originated over 6.7 million years ago. We find evidence for shared hotspots of recombination among the LCRs. REP19 seems to contain hotspots in the same place as the nonallelic recombination hotspots in NF1REPa and NF1REPc. This apparent conservation of patterns of recombination hotspots in moderately diverged paralogous regions contrasts with recent evidence that these patterns are not conserved in less-diverged orthologous regions of chimpanzees.  相似文献   

12.
Through exomic sequencing of ten hepatitis C virus (HCV)-associated hepatocellular carcinomas (HCC) and subsequent evaluation of additional affected individuals, we discovered novel inactivating mutations of ARID2 in four major subtypes of HCC (HCV-associated HCC, hepatitis B virus (HBV)-associated HCC, alcohol-associated HCC and HCC with no known etiology). Notably, 18.2% of individuals with HCV-associated HCC in the United States and Europe harbored ARID2 inactivation mutations, suggesting that ARID2 is a tumor suppressor gene that is relatively commonly mutated in this tumor subtype.  相似文献   

13.
Mitotic recombination occurs with high frequency in humans and mice. It leads to loss of heterozygosity (LOH) at important gene loci and can cause disease. However, the genetic modulators of mitotic recombination are not well understood. As recombination depends on a high level of nucleotide sequence homology, we postulate that the frequency of somatic variants derived from mitotic recombination should be diminished in progeny from crosses between strains of mice in which nucleotide sequences have diverged. Here we report that mitotic recombination is suppressed, to various degrees in different tissues, in hybrids of distantly related mouse strains. Reintroduction of greater chromosomal homology by backcrossing restores mitotic recombination in offspring. Thus, chromosomal divergence inhibits mitotic recombination and, consequently, may act as a modifier of cancer susceptibility by limiting the rate of LOH. The suppression of mitotic recombination in some F1 hybrids in which meiotic recombination persists indicates that these processes are differentially affected by chromosomal divergence.  相似文献   

14.
Wilms tumor is the most common renal malignancy of childhood. To identify common variants that confer susceptibility to Wilms tumor, we conducted a genome-wide association study in 757 individuals with Wilms tumor (cases) and 1,879 controls. We evaluated ten SNPs in regions significantly associated at P < 5 × 10(-5) in two independent replication series from the UK (769 cases and 2,814 controls) and the United States (719 cases and 1,037 controls). We identified clear significant associations at 2p24 (rs3755132, P = 1.03 × 10(-14); rs807624, P = 1.32 × 10(-14)) and 11q14 (rs790356, P = 4.25 × 10(-15)). Both regions contain genes that are plausibly related to Wilms tumorigenesis. We also identified candidate association signals at 5q14, 22q12 and Xp22.  相似文献   

15.
Experimental evidence for human mitochondrial DNA (mtDNA) recombination was recently obtained in an individual with paternal inheritance of mtDNA and in an in vitro cell culture system. Whether mtDNA recombination is a common event in humans remained to be determined. To detect mtDNA recombination in human skeletal muscle, we analyzed the distribution of alleles in individuals with multiple mtDNA heteroplasmy using single-cell PCR and allele-specific PCR. In all ten individuals who carried a heteroplasmic D-loop mutation and a distantly located tRNA point mutation or a large deletion, we observed a mixture of four allelic combinations (tetraplasmy), a hallmark of recombination. Twelve of 14 individuals with closely located heteroplasmic D-loop mutation pairs contained a mixture of only three types of mitochondrial genomes (triplasmy), consistent with the absence of recombination between adjacent markers. These findings indicate that mtDNA recombination is common in human skeletal muscle.  相似文献   

16.
Engineering a mouse balancer chromosome.   总被引:15,自引:0,他引:15  
Balancer chromosomes are genetic reagents that are used in Drosophila melanogaster for stock maintenance and mutagenesis screens. Despite their utility, balancer chromosomes are rarely used in mice because they are difficult to generate using conventional methods. Here we describe the engineering of a mouse balancer chromosome with the Cre-loxP recombination system. The chromosome features a 24-centiMorgan (cM) inversion between Trp53 (also known as p53) and Wnt3 on mouse chromosome 11 that is recessive lethal and dominantly marked with a K14-Agouti transgene. When allelic to a wild-type chromosome, the inversion suppresses crossing over in the inversion interval, accompanied by elevated recombination in the flanking regions. The inversion functions as a balancer chromosome because it can be used to maintain a lethal mutation in the inversion interval as a self-sustaining trans-heterozygous stock. This strategy can be used to generate similar genetic reagents throughout the mouse genome. Engineering of visibly marked inversions and deficiencies is an important step toward functional analyses of the mouse genome and will facilitate large-scale mutagenesis programs.  相似文献   

17.
Variants of the gene ALOX5AP (also known as FLAP) encoding arachidonate 5-lipoxygenase activating protein are known to be associated with risk of myocardial infarction. Here we show that a haplotype (HapK) spanning the LTA4H gene encoding leukotriene A4 hydrolase, a protein in the same biochemical pathway as ALOX5AP, confers modest risk of myocardial infarction in an Icelandic cohort. Measurements of leukotriene B4 (LTB4) production suggest that this risk is mediated through upregulation of the leukotriene pathway. Three cohorts from the United States also show that HapK confers a modest relative risk (1.16) in European Americans, but it confers a threefold larger risk in African Americans. About 27% of the European American controls carried at least one copy of HapK, as compared with only 6% of African American controls. Our analyses indicate that HapK is very rare in Africa and that its occurrence in African Americans is due to European admixture. Interactions with other genetic or environmental risk factors that are more common in African Americans are likely to account for the greater relative risk conferred by HapK in this group.  相似文献   

18.
A non-profit organisation which is working in the field of pathology with doctors and technicians for the last eleven years, displays the different activities performed, difficulties and projects in progress. As any association looking for resources, the search for funds is difficult, especially for the african technician workshop project in Yaounde. In practice, other factors play a major role in the efficiency and result of the activities. Pathology cytology and development is collaborating with Pathologi oltre frontiera (Italy) and Pathologists overseas (United States of America).  相似文献   

19.
FLP/FRT-induced mitotic recombination provides a powerful method for creating genetic mosaics in Drosophila and for discerning the function of recessive genes in a heterozygous individual. Here we show that mitotic recombination can be reproducibly induced in mouse embryonic stem (ES) cells, by Cre/loxP technology, at frequencies ranging from 4.2 x 10(-5) (Snrpn) to 7.0 x 10(-3) (D7Mit178) for single allelic loxP sites, and to 5.0 x 10(-2) (D7Mit178) for multiple allelic lox sites, after transient Cre expression. Notably, much of the recombination occurs in G2 and is followed by X segregation, where the recombinant chromatids segregate away from each other during mitosis. It is X segregation that is useful for genetic mosaic analysis because it produces clones of homozygous mutant daughter cells from heterozygous mothers. Our studies confirm the predictions made from studies in Drosophila that suggest that X segregation will not be limited to organisms with strong mitotic pairing, because the forces (sister-chromatid cohesion) responsible for X segregation are an elemental feature of mitosis in all eukaryotes. Our studies also show that genetic mosaic analysis in mice is feasible, at least for certain chromosomal regions.  相似文献   

20.
Determination of recombination rates across the human genome has been constrained by the limited resolution and accuracy of existing genetic maps and the draft genome sequence. We have genotyped 5,136 microsatellite markers for 146 families, with a total of 1,257 meiotic events, to build a high-resolution genetic map meant to: (i) improve the genetic order of polymorphic markers; (ii) improve the precision of estimates of genetic distances; (iii) correct portions of the sequence assembly and SNP map of the human genome; and (iv) build a map of recombination rates. Recombination rates are significantly correlated with both cytogenetic structures (staining intensity of G bands) and sequence (GC content, CpG motifs and poly(A)/poly(T) stretches). Maternal and paternal chromosomes show many differences in locations of recombination maxima. We detected systematic differences in recombination rates between mothers and between gametes from the same mother, suggesting that there is some underlying component determined by both genetic and environmental factors that affects maternal recombination rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号