首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
制备了两种离子液体[Cnmmim][NTf2](n=2,4),并分别用核磁共振氢谱1H NMR和差示扫描量热仪(DSC)对其进行了表征.在(298.15~338.15±0.01)K温度范围内,测定了离子液体[Cnmmim][NTf2](n=2,4)的密度ρ,电导率σ,运动粘度ν.计算了离子液体[Cnmmim][NTf2](n=2,4)的动力粘度η,摩尔体积Vm和摩尔电导率Λ.根据Nernst-Einstein方程和Eyring液体粘度理论分别计算得到了离子扩散系数D和粘性流动活化Gibbs自由能ΔG≠.通过VFT方程和Arrhenius方程对离子液体的动力粘度和电导率值进行线性拟合,并讨论了电导率、动力粘度和温度的关系.通过计算[Cnmmim][NTf2](n=2,4)及其他15种离子液体的W(Walden)系数,发现不同离子液体有不同的W值,即W系数是离子液体的特征物理量.  相似文献   

2.
测定了咪唑类离子液体[Cn mim][Br](n=4,6,8,10)在CDCl3中的1 H NMR和13 C NMR化学位移.结果表明,所研究离子液体在CDCl3中发生了聚集,离子液体阳离子的侧链长度、阴离子的类型均有不同程度的影响.  相似文献   

3.
介绍了在室温下设计合成的一种功能化离子液体1,2-二甲基-3-丁基咪唑硫酸氢盐离子液体[mmBim][HSO4]均为在不同温度下测定了该离子液体的密度、表面张力、粘度和电导率等性质,并根据特定的经验方程,估算了该离子液体的热膨胀系数、标准熵和晶格能等性质参数,为该离子液体的预期应用提供了重要的数据参考.  相似文献   

4.
离子液体对甲基橙的萃取热力学研究   总被引:3,自引:1,他引:2  
离子液体作为一种新型绿色溶剂已引起了国内外学者的高度关注[1].研究离子液体对有机物的萃取分离具有重要的应用价值[2].本文以[C4mim][PF6]离子液体作为萃取剂,研究了阴离子型染料甲基橙的萃取热力学性质.等温条件下,溶质在水相和离子液体相间的转移自由能可用下式表示:ΔGT(W→IL)=-RTlnKi=-RT[lnKc ln(V1/V2)]=ΔHT-TΔST(1)ΔGT是摩尔分数标度的转移自由能,Ki是摩尔分数标度的平衡常数,Kc是摩尔浓度标度的平衡常数,V1和V2分别是离子液体和水的摩尔体积,ΔHT和ΔST分别是转移焓和转移熵.如果假设在较小的温度范围内恒定不…  相似文献   

5.
在303.2~333.2K范围内,采用三釜气液平衡系统测量丙酮与5种咪唑类离子液体的二元气液平衡数据.然后采用非随机(局部)双液体模型(NRTL)关联二元体系的等温气液平衡.最后基于模型,获得了丙酮蒸气在离子液体中的无限稀释活度系数和亨利系数,并评价了吸收过程的Gibbs自由能、焓变、熵变和偏摩尔过量焓变等热力学性质.实验表明,亨利系数随着温度升高而增大,丙酮的无限稀释活度系数均小于1,混合溶液为负偏差溶液,利于丙酮的吸收.延长阳离子侧链烷基长度可缓慢提高丙酮溶解度,但相对于阳离子而言,阴离子对丙酮溶解度影响较大,且按如下顺序递增:[BF4][PF_6][Tf_2N].热力学分析表明丙酮吸收由体系的熵变控制.[Tf_2N]类离子液体吸收熵变值较大,混合溶液热力学稳定性高,与丙酮分子间作用力强,对丙酮溶解性能强.  相似文献   

6.
在T=(288.15~318.15)K温度范围内,测定了不同质量摩尔浓度的离子液体N-丙基-吡啶二氰胺[C_3py][DCA]水溶液的密度和表面张力。根据密度值计算了不同浓度[C_3py][DCA]水溶液的平均摩尔体积和热膨胀系数,水溶液平均摩尔体积随着温度和质量浓度的升高而增大,热膨胀系数随着温度的升高而增大。并提出了一种估算水溶液表面张力的经验方程。预测值与实验值具有较好的一致性。  相似文献   

7.
为了更好的研究离子液体二元体系的性质,同时为了离子液体的应用研究提供理论数据,本研究测定了离子液体1-乙基乙基醚-3-甲基咪唑双(三氟甲烷磺酰)亚胺盐[EOEMIM][NTf2]与甲醇二元混合体系(即摩尔分数x1 = 0.0000 ~ 1.000)在T = (288.15 ~ 318.15)K温度范围内间隔5 K的密度值和粘度值。二元混合物的密度和粘度值随着温度T的升高而减小,随着摩尔分数的增加而增大。二元混合物的平均摩尔体积随着温度的升高而减小,随着摩尔分数的增加而增大。热膨胀系数随着温度和摩尔分数的变化缓慢。二元混合物的超额摩尔体积均是负值,Redlich-Kister方程将超额摩尔体积对摩尔分数作图,在最低点时值最小,说明此时离子液体与甲醇分子间的相互作用力最强。粘度偏差和超额粘滞流动活化Gibbs自由能分别对摩尔分数进行R-K方程拟合,拟合效果良好。结合R-K方程参数值,提出估算二元混合物任何组成的平均摩尔体积半经验方法和粘度半经验方法,二元混合物的平均摩尔体积和粘度的估算值分别与他们相对应的实验值较好的一致。  相似文献   

8.
<正>离子液体作为纤维素的优良溶剂,近年来相关的研究方兴未艾[1].但是,到目前为止,纤维素在离子液体中的溶解机理尚未得到一致的认识,特别是离子液体阳离子的结构对纤维素溶解性能的影响规律鲜有报道.本文中,设计合成了13种具有相同阴离子(CH3COO-)和不同阳离子的离子液体,1-丁基-3-甲基咪唑醋酸盐[C4mim][CH3COO](1),1-甲氧乙基-3-甲基咪唑醋酸盐[C1OC2mim][CH3COO](2),1-羟乙基-3-甲基咪唑醋酸盐[C2OHmim][CH3COO](3),1-丁基-2,3-  相似文献   

9.
考察正丙醇对Gemini阳离子表面活性剂1,2-二亚甲基-双(十二烷基二甲基溴化铵)(C12-2-C12.2Br)的临界胶束浓度随温度的变化情况.实验结果表明:临界胶束浓度随温度的变化曲线出现最低点.在实验数据基础上,通过热力学模型,计算得到表面活性剂胶束化过程的Gibbs自由能、熵和焓,表明胶束形成是一个自发进行的过程,其Gibbs自由能同时受到温度、熵和焓的影响.在低温时,Gibbs自由能主要受熵的驱动;而在较高温度时,Gibbs自由能主要受焓的驱动.  相似文献   

10.
目的:以离子液体1-(3-磺酸基)丙基-3-甲基咪唑硫酸盐([PSmim][HSO4])为催化剂催化合成柠檬酸三丁酯.方法:合成离子液体1-(3-磺酸基)丙基-3-甲基咪唑硫酸盐,并作为催化剂催化合成柠檬酸三丁酯.离子液体与浓硫酸的催化合成TBC的活性差异进行比较. 结果:离子液体催化合成柠檬酸三丁酯催化效率高与浓硫酸,柠檬酸三丁酯平均收率在91.50%,浓硫酸催化TBC平均收率86%.离子液体[Psmim][HSO4]与柠檬酸三丁酯均以NMR表征.结论:酸性离子催化合成TBC具有清洁、重复利用、催化活性高及后处理简便等优点.  相似文献   

11.
长链B酸离子液体催化油酸酯化制备生物柴油   总被引:1,自引:0,他引:1  
为了寻找制备生物柴油过程中能有效降低高酸价油脂酸值的绿色催化剂,采用2步法制备了带表面活性的长链B酸离子液体(IL)N,N-二甲基-N-(3-磺酸丙基)十二烷铵对甲苯磺酸盐[n-DodecMe2N-PS][PTSA]),利用FT-IR,1 H NMR,13C NMR,UV/vis和TGA对该新型离子液体结构进行了表征.利用Hammett方法测定了离子液体的酸度函数值.将其用于催化油酸酯化制备生物柴油,结果表明:该长链B酸离子液体具有较高的催化活性.在n(甲醇)∶n(油酸)∶n(催化剂)为1.5∶1∶0.1,60℃,反应3h条件下催化油酸酯化反应,油酸甲酯产率达96.5%.反应结束后离子液体与酯化产物分为两相,产物易于分离,该离子液体重复利用9次,催化活性没有明显降低.因此,长链离子液体可作为利用低价油脂(如地沟油)制备生物柴油的高效绿色催化剂.  相似文献   

12.
采用现场表面增强红外光谱法(SEIRAS)对金电极与离子液体1-丁基-3-甲基咪唑三氟甲基磺酸盐([Bmim][OTf])的界面电化学双电层结构进行了研究.循环伏安结果表明离子液体[Bmim][OTf]在金电极上的电化学窗口为4.0 V以上.SEIRAS结果显示阴阳离子在电极表面上发生脱吸附的电位区间以及阳离子和阴离子在电极表面上发生竞争的共吸附,同时阴阳离子在金电极界面上的脱吸附有显著的延迟效应产生,其原因与离子的表面吸附能和马德龙(Madelung)位能综合作用有关.  相似文献   

13.
为填补国内在离子液体与绿色氧化剂自燃领域研究的空白,本文开展了咪唑硫氰酸类离子液体在质量分数为90%的过氧化氢中的自燃特性研究,并分析了液滴碰撞速度和添加剂对咪唑硫氰酸类离子液体在过氧化氢中点火延迟时间的影响。结果显示:离子液体在过氧化氢中的自燃过程分为3个阶段:液滴与过氧化氢接触、混合,出现液坑;产生中央射流,射流顶端分离出液滴;温度升高,黑色烟雾与火核出现。离子液体点火延迟时间与碰撞速度呈负相关,由于黏度和燃烧极限等因素的影响,1-乙基-3-甲基咪唑硫氰酸([EMIM][SCN])的点火延迟时间减小程度随碰撞速度的增大而减弱,而1-丁基-3-甲基咪唑硫氰酸([BMIM][SCN])则相反。相同碰撞速度下,[BMIM][SCN]的点火延迟时间小于[EMIM][SCN],表明[BMIM][SCN]与质量分数为90%的过氧化氢自燃效果好。掺混燃料的点火延迟时间随添加剂的摩尔比增加呈增大的趋势,且均大于离子液体的点火延迟时间,当[EMIM][SCN]掺混乙二醇的摩尔比为0.8、[BMIM][SCN]掺混乙二醇的摩尔比为0.9、[EMIM][SCN]和[BMIM][SCN]掺混丙二醇的摩尔比...  相似文献   

14.
在300.2-308.2K温度区间内,用表面张力仪测定了正丁醇稀水溶液的表面张力随其浓度的变化.应用热力学方程计算体系的表面过剩熵,表面过剩焓,及Gibbs吸附量和正丁醇分子的平均截面积.同时讨论了正丁醇与表面活性剂(十六烷基三甲基溴化铵,CTAB)相互作用的热力学原理,并希望能为助表面活性剂的选择、使用提供理论依据.  相似文献   

15.
以1-丁基-3-甲基咪唑阳离子([Bmim]+)型离子液体[Bmim]X(X=Cl,Ac)和等物质的量的无机盐AXn(A=Fe,Zn)为原料,通过一步法合成了金属络合阴离子型离子液体[Bmim][AXn+1],测定了离子液体在不同温度下的密度和黏度,采用经验模型关联了密度、黏度与温度的关系,对比研究了CO2气体在[Bmim]X和[Bmim][AXn+1]中的溶解度。[Bmim]X和[Bmim][AXn+1]的密度和黏度均随温度升高而下降,金属络合阴离子型离子液体[Bmim][AXn+1]的密度远远大于对应的传统离子液体[Bmim]X的密度。[Bmim][ZnCl3]和[Bmim][Zn(Ac)3]的黏度远远高于对应的[Bmim]Cl和[Bmim]Ac的黏度,但[Bmim][FeCl4]的黏度远低于对应的[Bmim]Cl的黏度。金属络合阴离子型离子液体[Bmim][AXn+1]吸收CO2的能力显著提高。  相似文献   

16.
在293.15~343.15 K和常压下对手性离子液体1-丁基-3-甲基-咪唑乳酸盐的密度和表面张力进行了测定,并根据密度和表面张力对其体积性质和表面性质进行了计算;在298.15~318.15 K和常压下,对离子液体1-丁基-3-甲基-咪唑乳酸盐与水二元混合物的密度和表面张力在全摩尔浓度范围内进行了测定。在此基础上,对二元混合体系的过量摩尔体积进行了计算,根据Redlich-Kister方程对其进行了拟合,并对体系的热膨胀系数、偏摩尔体积、过量偏摩尔体积以及离子液体和水的表观摩尔体积进行了讨论,对二元混合物的表面性质进行了计算。  相似文献   

17.
离子液体在水、乙醇及其混合物中的电导率测定   总被引:3,自引:0,他引:3  
用电导率仪测定了298.15 K条件下多种离子液体,即1-甲基-3-乙基咪唑溴([Emim]Br)、1-甲基-3-丁基咪唑溴([Bmim]Br)、1-甲基-3-丁基咪唑氯([Bmim]Cl)、1-甲基-3-丁基咪唑氟硼酸盐([Bmim][BF4])、1-甲基-3-甲基咪唑磷酸二甲酯([Mmim][DMP])、1-甲基-3-乙基咪唑磷酸二乙酯([Emim][DEP])、1-甲基-3-丁基咪唑磷酸二丁酯([Bmim][DBP])以及醋酸钾(KAc)在水、乙醇及其混合溶剂中的电导率数据。结果表明,室温离子液体的电导率顺序为:[Bmim][BF4]>[Mmim][DMP]> [Emim][DEP]> [Bmim][DBP],该顺序与离子液体的黏度成反比。离子液体在水中的电导率的次序大致为[Emim]Br>[Bmim]Cl[Bmim]Br[Bmim][BF4]>[Mmim][DMP]>[Emim][DEP]> [Bmim][DBP]。离子液体在水中的电导率高于在乙醇中的电导率,且电导率随浓度的增加均先升高后降低。与醋酸钾相比,溶剂变化对离子液体电导率的影响要小得多。离子液体[Mmim][DMP]和[Emim][DEP]能显著提高乙醇水溶液中乙醇的相对挥发度,且盐析作用[Mmim][DMP]> [Emim][DEP],这与在混合溶剂中电导率的大小次序是一致的。  相似文献   

18.
利用室温离子液体[BPY][BF4]作溶剂,将芳醛、乙酰乙酸乙酯和尿素三组分于80℃一锅煮"合成了一系列3,4-二氢嘧啶-2(1H)-酮.与传统方法相比,该法操作简单,产率高,反应时间短且环境友好.  相似文献   

19.
用过氧化物法合成了[Co(appma)(amp)Cl][ZnCl4](appma=N-(2-氨丙基)-2-吡啶甲胺,mp=2-(氨甲基)吡啶) 体系配合物.元素分析与13C、1H NMR检测表明,配合物是标题体系中的二异构体且配合物阳离子中可能具有C-H…π结构.  相似文献   

20.
以2-吡咯基三氯乙酮为主要原料,经过乙二醇单酯化、羟基氯取代、环合三步反应制得了3,4-二氢吡咯[2,1-c][1,4](噁)嗪-1-酮;又经过Friedel-Crafts酰基化和环合反应制得了未见文献报道的7-芳酰基-3,4-二氢吡咯[2,1-c][1,4](噁)嗪-1-酮.它们及其某些重要中间体的结构分别采用红外光谱、质谱、核磁共振氢谱、核磁共振碳谱以及高分辨率质谱进行了表征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号