共查询到20条相似文献,搜索用时 62 毫秒
1.
肜丽 《西南师范大学学报(自然科学版)》2013,38(9):086-093
为快速实现多目标跟踪的数据关联,将人工蜂群算法(ABC)与多目标跟踪数据关联相结合,实现快速的多目标跟踪数据关联.本文以跟踪门确定目标的有效量测,以新息的似然函数描述量测与目标的关联关系,建立多目标数据关联的组合优化模型,详细阐述了人工蜂群算法的基本原理,工作流程.利用人工蜂群算法寻找多目标数据关联优化组合模型的最优解,人工蜂群算法在离散空间的启发式机制实现搜索目标的量测与最佳数据关联.仿真表明,该算法与经典的JPDA算法以及基于元启发式的蚁群算法的数据关联算法进行比较,提高目标关联准确性和跟踪精度. 相似文献
2.
在多目标跟踪的拥挤场景中,目标之间的相互遮挡以及目标外观变化,给多目标跟踪中的目标位置预测和数据关联带来了很大的挑战.利用卡尔曼滤波算法建模目标运动模型对目标轨迹进行预测,能够有效缓解目标外观变化的影响.数据关联是多目标跟踪中的重要组成部分,为此,设计了一种相关性网络来处理多目标跟踪中的数据关联.实验结果证明:利用运动模型在跟踪速度上可以实现实时的跟踪效果,设计的相关性网络有效提升了跟踪器的跟踪精度. 相似文献
3.
一种适于工程应用的多目标跟踪快速数据关联算法 总被引:8,自引:0,他引:8
提出了一种新的多目标跟踪快速数据关联算法,重点分析了关联门相交区域中的公共回波对航迹更新的影响,并综合考虑了关联门内其余侯选回波对航迹更新的作用,以很小的计算代价完成了后验概率的计算。仿真表明,新算法以与PDAF算法接近的计算量,达到了接近于JPDAF算法的目标跟踪成功率。 相似文献
4.
5.
提出一种基于数据关联性能评价的优化跟踪门算法,并通过它来减少跟踪门内来自非本目标的回波,最终达到提高多目标多传感器跟踪系统性能的目的,理论分析表明,与基于假设树最大似然函数的跟踪门算法相比,本算法有效地改善了系统的性能,尤其在强干扰、高虚警的情况下更为明显。 相似文献
6.
基于模糊聚类的异类多传感器数据关联算法 总被引:4,自引:0,他引:4
针对异类传感器观测空间不一致的问题,提出了基于模糊聚类的异类多传感器数据关联算法.该算法首先通过在不同传感器的观测空间上建立多目标运动状态的投影,将多传感器多目标关联问题分解为多个单传感器多目标的关联问题,再对单传感器采用模糊聚类的方法求解关联概率,实现了在密集杂波环境中多目标的数据关联和精确跟踪.该算法降低了多传感器多目标跟踪的复杂性和计算量,有效地解决了异类多传感器可用公共信息少的问题.仿真结果表明,该算法的跟踪误差要小于传统的联合概率数据关联算法,且具有更优越的跟踪性能. 相似文献
7.
一种用于多目标跟踪的改进PDA算法 总被引:1,自引:0,他引:1
对概率数据关联滤波(probability data association filter, PDA)算法进行了改进.新算法考虑了临近目标对航迹更新的影响,修正了关联门相交区域内回波来自被跟踪目标的后验概率.仿真证明,新算法在计算量和PDA算法接近的情况下减少了误跟踪和目标丢失现象. 相似文献
8.
目前,多目标跟踪算法仍面临诸多挑战,例如遮挡、快速运动等所造成的影响难以完全规避.为了解决上述问题,提出一种基于马尔科夫决策过程的多目标跟踪算法.该算法将每个目标建模成一个马尔科夫决策过程,通过最大化奖励函数来驱动状态间的转移,并将强化学习训练用于数据关联相似度函数,有效地解决了目标遮挡问题.同时,为了解决物体快速运动... 相似文献
9.
10.
基于动态多维分配的多基地雷达多目标跟踪算法 总被引:2,自引:0,他引:2
对于T-R^s多基地雷达系统,提出一种具有航迹质量管理的多目标跟踪算法,以解决多目标跟踪过程中航迹起始、航迹确认以及航迹删除等问题.采用累加的对数似然比(10garithm likelihood ratio,LLR)计算融合中心每个航迹的质量,并依据航迹判决规则把当前航迹分成四类,然后用相应方法处理这些航迹集合.仿真结果表明,该算法能对杂渡中多个目标进行稳定可靠的跟踪. 相似文献
11.
为了克服杂波环境下对多目标进行数据互联时,计算量出现组合爆炸现象,提出了改进的基于FCM的多目标跟踪数据关联算法.将航迹的预测值转换到各个传感器的观测空间作为各自的聚类中心,利用目标属于所有量测的隶属度,来代替JPDAF中的关联概率,将多目标数据关联问题可转化为模糊聚类问题,进行关联计算.改进的基于FCM的多目标跟踪数据关联算法,有效地利用了目标状态估计中的历史信息,实现量测与航迹的关联.该算法克服了JPDAF算法计算量大的缺点,实现杂波环境下多目标数据互联.仿真结果表明了该算法的有效性. 相似文献
12.
针对无线传感器网络环境下的多目标跟踪时近相距和轨迹交叉目标容易出现目标丢失和跟踪混淆的问题,提出一种分解式模糊聚类粒子滤波(DFCM—RPF)的多目标跟踪方法。把多传感器数据融合和多目标跟踪问题分解为单传感器数据融合和单目标跟踪问题,先对传感器节点量测用基于跟踪门限算法去除杂波,在各传感器节点的观测空间分别建立模糊聚类算法进行数据关联并最优融合,然后用正则化粒子滤波预测目标状态。仿真表明,DFCM—RPF算法与原FCM多目标跟踪方法相比,航迹关联正确率由85%提高到100%,目标预测位置的RMSE由4.437 7 m下降到1.307 3 m,DFCM—RPF算法体现了较好的跟踪性能,并集数据关联、数据融合和目标跟踪于一体,大大降低WSN多目标跟踪问题的复杂性和计算量。 相似文献
13.
关联规则是数据挖掘的重要手段,它基于支持度、置信度等对规则进行筛选,生成有用的规则。关联规则反映了大量数据中项集之间的相互依存性和关联性。Apriori算法和FP-Growth算法是关联规则挖掘中的两个典型算法。本文阐述了这两种算法的基本思想、数据挖掘步骤,并讨论了它们的优缺点及差异。 相似文献
14.
传统的最邻近联合概率数据关联算法(NNJPDA)不能直接用于多传感器对多目标的跟踪。针对这一问题,提出了一种适用于多传感器多目标跟踪的最邻近联合概率数据关联算法,它以极大似然估计完成对来自多传感器的测量集合进行同源最优划分,然后采用NNJPDA方法对多目标进行跟踪。经过理论分析和仿真试验,证明了该方法能有效地进行多传感器多目标的跟踪,且具有算法简单、跟踪精度高、附加计算量小等优点。 相似文献
15.
朱彦廷 《西昌学院学报(自然科学版)》2010,24(3):60-62,67
根据关联规则挖掘的要求,结合遗传算法的特点,提出了一种基于遗传算法的关联规则挖掘算法,在基本遗传操作选择、交叉、变异的基础上,引入了挑选操作,取消了交叉、变异概率,给出了详细的算法设计及描述,并通过实例证明了算法的性能。 相似文献
16.
数据立方体中多维关联规则挖掘算法 总被引:6,自引:1,他引:6
数据立方体是数据仓库中数据组织和存贮的重要手段,它采用多维立体数据存贮方式来取代传统的平面数据存贮方式,为进行多维数据分析提供了根本保证。本文通过对稀松和密质两类立方体进行分析,给出了分别针对这两种情况的多维关联规则挖掘算法,并通过实验对其在不同情况下的性能进行了分析,结果证明,两种算法在特定情况下的效率提高是十分明显的。 相似文献
17.
本文介绍了关联规则的概念,并通过一个例子说明了关联规则挖掘的一种算法--Apriori算法,指出了数据挖掘未来研究的重点和方向。 相似文献
18.
基于只测向的机载单站定位技术 总被引:2,自引:0,他引:2
针对机载单站无源交叉定位技术中存在的虚假定位问题,提出一种新的关联方法.该算法先通过异面测向线距离进行测向粗关联,排除大部分虚假定位组合,减小运算量.再利用基于不变量的关联方法进行测向细关联,近一步排除虚假测向组合,提取出真实目标的测向线组合进行交叉定位.实验结果表明,文中算法可以满足三维空间下对目标准确、快速的定位需求. 相似文献
19.
数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。IT就业市场竞争已经相当激烈,而数据处理的核心技术——数据挖掘更是得到了前所未有的重视。关联规则一般用以发现交易数据库中不同商品(项)之间的联系,用这些规则找出顾客的购买行为模式,比如购买了某一种商品对购买其他商品的影响,这种规则可以应用于超市商品货架设计、货物摆放以及根据购买模式对用户进行分类等。通过发现这个关联的规则,可以更好地了解和掌握事物的发展、动向等。在市场营销、企业投资中具有重要的作用。 相似文献
20.
多目标跟踪领域中,在背景复杂、目标遮挡、目标尺度和姿态变换等情况下,容易出现目标丢失、身份交换和跳变等问题.针对这些问题,提出了一种基于检测的多目标跟踪算法,使用改进的YOLO人体人脸关联算法,对当前帧待检目标进行分类和位置检测,使用生成对抗网络构建特征提取模型,学习目标的主要特征以及细微特征,再运用生成对抗网络生成多目标的运动轨迹,最终融和目标的运动信息和外观信息,得到跟踪目标的最优匹配.在MOT16数据集下的实验结果表明,提出的多目标跟踪算法具有较高的精确度和鲁棒性,对比目前身份交换和跳变最少的算法,跳变的次数少了65%,准确度提高了0.25%. 相似文献