首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All living cells require specific mechanisms that target proteins to the cell surface. In eukaryotes, the first part of this process involves recognition in the endoplasmic reticulum of amino-terminal signal sequences and translocation through Sec translocons, whereas subsequent targeting to different surface locations is promoted by internal sorting signals. In bacteria, N-terminal signal sequences promote translocation across the cytoplasmic membrane, which surrounds the entire cell, but some proteins are nevertheless secreted in one part of the cell by poorly understood mechanisms. Here we analyse localized secretion in the Gram-positive pathogen Streptococcus pyogenes, and show that the signal sequences of two surface proteins, M protein and protein F (PrtF), direct secretion to different subcellular regions. The signal sequence of M protein promotes secretion at the division septum, whereas that of PrtF preferentially promotes secretion at the old pole. Our work therefore shows that a signal sequence may contain information that directs the secretion of a protein to one subcellular region, in addition to its classical role in promoting secretion. This finding identifies a new level of complexity in protein translocation and emphasizes the potential of bacterial systems for the analysis of fundamental cell-biological problems.  相似文献   

2.
In mammalian cells, short peptides derived from intracellular proteins are displayed on the cell membrane associated with class I molecules of the major histocompatibility complex (MHC). The surface presentation of class I-peptide complexes presumably alerts the immune system to intracellular viral protein synthesis. Peptides derived from the cytosol must reach the cisternae of the endoplasmic reticulum where they are required for the assembly of stable class I molecules, and it has been proposed that the products of the two MHC-encoded ATP-binding cassette (ABC) transporter genes function to deliver the peptides across the membrane of the endoplasmic reticulum. This idea is supported by experiments in which transfection of a human cell line defective in class I expression with a complementary DNA of one of these genes restored cell surface expression levels. Here we show that the complete phenotype of the mouse mutant cell line RMA-S, in which lack of surface expression of stable class I molecules correlates with an inability to present viral peptides originating in the cytosol, is repaired by the cDNA of the other transporter gene. These results are consistent with the possibility that the two transporter polypeptides form a heterodimer.  相似文献   

3.
I Braakman  J Helenius  A Helenius 《Nature》1992,356(6366):260-262
Being topologically equivalent to the extracellular space, the lumen of the endoplasmic reticulum (ER) provides a unique folding environment for newly synthesized proteins. Unlike other compartments in the cell where folding occurs, the ER is oxidizing and therefore can promote the formation of disulphide bonds. The reducing agent dithiothreitol, when added to living cells, inhibits disulphide formation with profound effects on folding. Taking advantage of this effect, we demonstrate here that folding of influenza haemagglutinin is energy dependent. Metabolic energy is required to support the correct folding and disulphide bond formation in this well characterized viral glycoprotein, to rescue misfolded proteins from disulphide-linked aggregates, and to maintain the oxidized protein in its folded and oligomerization-competent state.  相似文献   

4.
N T Ktistakis  M E Linder  M G Roth 《Nature》1992,356(6367):344-346
In many mammalian cells brefeldin A interferes with mechanisms that keep the Golgi appartus separate from the endoplasmic reticulum. The earliest effect of brefeldin A is release of the coat protein beta-COP from the Golgi. This release is blocked by pretreatment with GTP-gamma S or AlF4- (ref. 12). The AlF4- ion activates heterotrimeric G proteins but not proteins of the ras superfamily, suggesting that a heterotrimeric G protein might control membrane transfer from the endoplasmic reticulum to the Golgi. We report here that mastoparan, a peptide that activates heterotrimeric G proteins, promotes binding of beta-COP to Golgi membranes in vitro and antagonizes the effect of brefeldin A on beta-COP in perforated cells and on isolated Golgi membranes. This inhibition is greatly diminished if cells are pretreated with pertussis toxin before perforation. Thus, a heterotrimeric G protein of the Gi/Go subfamily regulates association of coat components with Golgi membranes.  相似文献   

5.
Xenopus oocytes can secrete bacterial beta-lactamase   总被引:16,自引:0,他引:16  
M Wiedmann  A Huth  T A Rapoport 《Nature》1984,309(5969):637-639
Most secretory proteins are synthesized as precursor polypeptides carrying N-terminal, hydrophobic sequences which, by means of a signal recognition particle (SRP), trigger the membrane transfer of the polypeptide and are subsequently cleaved off. The signal sequences appear to be interchangeable between prokaryotes and eukaryotes. In bacteria, secretion only involves the crossing of a membrane, whereas in eukaryotes the secretory process can be separated into two distinct phases: translocation across the membrane of the rough endoplasmic reticulum and subsequent intraluminal transport by processes involving vesicle budding and fusion. Since secretory proteins must be distinguished from other soluble proteins destined for various sites in the reticular system, it is conceivable that eukaryotic secretory proteins possess additional markers distinct from the signal peptide to guide the polypeptide after its transfer through the membrane. Proteins are secreted at different rates from a eukaryotic cell, suggesting a role in intracellular transport for receptors with differing affinities for some topogenic features in secretory proteins. We have tested this possibility by introducing into the lumen of eukaryotic rough endoplasmic reticulum a prokaryotic protein which, by virtue of its origin, had not been adapted to the eukaryotic secretory pathway. We reasoned that secretion of the bacterial protein would indicate that after membrane transfer no topogenic signal(s) and corresponding recognition system(s) are required. We report here that this is indeed the case.  相似文献   

6.
M Jokinen  C G Gahmberg  L C Andersson 《Nature》1979,279(5714):604-607
During biosynthesis of glycophorin A in K562 cells a precursor is rapidly transferred through the endoplasmic reticulum membrane with the COOH-terminal remaining in the cytoplasm. This is glycosylated within the cell and appears at the cell surface after about 30 min. The biosynthetic pathway resembles that described for viral membrane glycoproteins.  相似文献   

7.
Membrane remodelling plays an important role in cellular tasks such as endocytosis, vesiculation and protein sorting, and in the biogenesis of organelles such as the endoplasmic reticulum or the Golgi apparatus. It is well established that the remodelling process is aided by specialized proteins that can sense as well as create membrane curvature, and trigger tubulation when added to synthetic liposomes. Because the energy needed for such large-scale changes in membrane geometry significantly exceeds the binding energy between individual proteins and between protein and membrane, cooperative action is essential. It has recently been suggested that curvature-mediated attractive interactions could aid cooperation and complement the effects of specific binding events on membrane remodelling. But it is difficult to experimentally isolate curvature-mediated interactions from direct attractions between proteins. Moreover, approximate theories predict repulsion between isotropically curving proteins. Here we use coarse-grained membrane simulations to show that curvature-inducing model proteins adsorbed on lipid bilayer membranes can experience attractive interactions that arise purely as a result of membrane curvature. We find that once a minimal local bending is realized, the effect robustly drives protein cluster formation and subsequent transformation into vesicles with radii that correlate with the local curvature imprint. Owing to its universal nature, curvature-mediated attraction can operate even between proteins lacking any specific interactions, such as newly synthesized and still immature membrane proteins in the endoplasmic reticulum.  相似文献   

8.
D Vaux  J Tooze  S Fuller 《Nature》1990,345(6275):495-502
Monoclonal antibodies were raised against antibodies to distinct carboxy-terminal KDEL sequences of two soluble, resident endoplasmic reticulum proteins. These anti-idiotype reagents recognize an intrinsic membrane protein with characteristics expected of a receptor responsible for the recognition and return of resident proteins to the endoplasmic reticulum.  相似文献   

9.
Most antigens must be processed intracellularly before they can be presented, in association with major histocompatibility complex (MHC) molecules at the cell surface, for recognition by the antigen-specific receptor of T cells. This processing appears to involve cleavage of protein antigens to smaller peptides. Only certain fragments of any protein can serve as T-cell epitopes and this is, at least in part, determined by the requirement that peptides be able to bind the MHC molecules. Class I restricted antigens are derived from proteins, such as viral antigens, that are synthesized within the presenting cell. Many of these antigens are cytosolic proteins and recent evidence suggests that it is in the cytosol that these proteins are processed to produce either the antigenic peptides or processed intermediates. How and where these processed cytosolic antigens cross the membrane of the vacuolar system and bind to the extracellular domain of the class I molecule is not known but one obvious site for this process is the endoplasmic reticulum (ER), because this organelle is specialized to translocate proteins across the membrane from the cytosol into the secretory system. Based on this model, we reasoned that if we could pharmacologically block the movement of proteins out of the ER, endogenous antigen presentation would cease. An agent which causes such an effect is available--the fungal antibiotic Brefeldin A (BFA). Consistent with the above hypothesis, we report that BFA completely abolishes the ability of a cell to present endogenously synthesized antigens to class I restricted cytotoxic T cells.  相似文献   

10.
A substantial proportion of the genome encodes membrane proteins that are delivered to the endoplasmic reticulum by dedicated targeting pathways. Membrane proteins that fail targeting must be rapidly degraded to avoid aggregation and disruption of cytosolic protein homeostasis. The mechanisms of mislocalized protein (MLP) degradation are unknown. Here we reconstitute MLP degradation in vitro to identify factors involved in this pathway. We find that nascent membrane proteins tethered to ribosomes are not substrates for ubiquitination unless they are released into the cytosol. Their inappropriate release results in capture by the Bag6 complex, a recently identified ribosome-associating chaperone. Bag6-complex-mediated capture depends on the presence of unprocessed or non-inserted hydrophobic domains that distinguish MLPs from potential cytosolic proteins. A subset of these Bag6 complex 'clients' are transferred to TRC40 for insertion into the membrane, whereas the remainder are rapidly ubiquitinated. Depletion of the Bag6 complex selectively impairs the efficient ubiquitination of MLPs. Thus, by its presence on ribosomes that are synthesizing nascent membrane proteins, the Bag6 complex links targeting and ubiquitination pathways. We propose that such coupling allows the fast tracking of MLPs for degradation without futile engagement of the cytosolic folding machinery.  相似文献   

11.
内质网是真核细胞合成膜蛋白和分泌蛋白的主要场所,当细胞经历缺氧、钙离子稳态失衡、糖基化异常或内质网内蛋白合成急剧增加时,就会造成腔内未折叠蛋白聚集体的形成,引发细胞毒性.这时便会激活一系列信号通路,通过增加内质网中分子伴侣的数量、降低蛋白合成速率、加快未折叠蛋白降解来保护细胞,当刺激严重或时间过长则会引起细胞凋亡.这种反应就称为内质网应激反应,也叫未折叠蛋白反应.正常人体细胞随着分裂次数增加或受外界因素诱导逐渐进入一种不可逆的细胞周期阻滞,即细胞衰老.细胞衰老会伴随着各种生理生化的变化,如内质网的结果和功能的改变.内质网应激反应会随着细胞衰老而发生一些改变,与衰老相关疾病密切相关而备受关注.因此深入研究内质网应激反应对于揭示衰老及衰老相关疾病的分子机制具有重要的科学意义.  相似文献   

12.
Identification of a ribosome receptor in the rough endoplasmic reticulum   总被引:12,自引:0,他引:12  
A J Savitz  D I Meyer 《Nature》1990,346(6284):540-544
Attachment of ribosomes to the membrane of the endoplasmic reticulum is one of the crucial first steps in the transport and secretion of intracellular proteins in mammalian cells. The process is mediated by an integral membrane protein of relative molecular mass 180,000 (Mr 180K), having a large (at least 160K) cytosolic domain that, when proteolytically detached from the membrane, can competitively inhibit the binding of ribosomes to intact membranes. Isolation of this domain has led to the identification, purification and characterization of the intact ribosome receptor, as well as its functional reconstitution into lipid vesicles.  相似文献   

13.
MHC class I molecules function to present peptides eight to ten residues long to the immune system. These peptides originate primarily from a cytosolic pool of proteins through the actions of proteasomes, and are transported into the endoplasmic reticulum, where they assemble with nascent class I molecules. Most peptides are generated from proteins that are apparently metabolically stable. To explain this, we previously proposed that peptides arise from proteasomal degradation of defective ribosomal products (DRiPs). DRiPs are polypeptides that never attain native structure owing to errors in translation or post-translational processes necessary for proper protein folding. Here we show, first, that DRiPs constitute upwards of 30% of newly synthesized proteins as determined in a variety of cell types; second, that at least some DRiPs represent ubiquitinated proteins; and last, that ubiquitinated DRiPs are formed from human immunodeficiency virus Gag polyprotein, a long-lived viral protein that serves as a source of antigenic peptides.  相似文献   

14.
J Luirink  S High  H Wood  A Giner  D Tollervey  B Dobberstein 《Nature》1992,359(6397):741-743
Hydrophobic signal-sequences direct the transfer of secretory proteins across the inner membrane of prokaryotes and the endoplasmic reticulum membranes of eukaryotes. In mammalian cells, signal-sequences are recognized by the 54K protein (M(r) 54,000) of the signal recognition particle (SRP) which is believed to hold the nascent chain in a translocation-competent conformation until it contacts the endoplasmic reticulum membrane. The SRP consists of a 7S RNA and six different polypeptides. The 7S RNA and the 54K signal-sequence-binding protein (SRP54) of mammalian SRP exhibit strong sequence similarity to the 4.5S RNA and P48 protein (Ffh) of Escherichia coli which form a ribonucleoprotein particle. Depletion of 4.5S RNA or overproduction of P48 causes the accumulation of the beta-lactamase precursor, although not of other secretory proteins. Whether 4.5S RNA and P48 are part of an SRP-like complex with a role in protein export is controversial. Here we show that the P48/4.5S RNA ribonucleoprotein complex interacts specifically with the signal sequence of a nascent secretory protein and therefore is a signal recognition particle.  相似文献   

15.
Immune recognition of intracellular proteins is mediated by major histocompatibility complex (MHC) class I molecules that present short peptides to cytotoxic T cells. Evidence suggests that peptides arise by cleavage of proteins in the cytoplasm and are transported by a signal-independent mechanism into a pre-Golgi region of the cell, where they take part in the assembly of class I heavy chains with beta 2-microglobulin (reviewed in refs 5-7). Analysis of cells that have defects in class I molecule assembly and antigen presentation has shown that this phenotype can result from mutations in either of the two ABC transporter genes located in the class II region of the MHC. This suggested that the protein complex encoded by these two genes transports peptides from the cytosol into the endoplasmic reticulum. Here we report additional evidence by showing that the transporter complex is located in the endoplasmic reticulum membrane and is probably oriented with its ATP-binding domains in the cytosol.  相似文献   

16.
Molecular machinery for non-vesicular trafficking of ceramide   总被引:2,自引:0,他引:2  
Hanada K  Kumagai K  Yasuda S  Miura Y  Kawano M  Fukasawa M  Nishijima M 《Nature》2003,426(6968):803-809
Synthesis and sorting of lipids are essential for membrane biogenesis; however, the mechanisms underlying the transport of membrane lipids remain little understood. Ceramide is synthesized at the endoplasmic reticulum and translocated to the Golgi compartment for conversion to sphingomyelin. The main pathway of ceramide transport to the Golgi is genetically impaired in a mammalian mutant cell line, LY-A. Here we identify CERT as the factor defective in LY-A cells. CERT, which is identical to a splicing variant of Goodpasture antigen-binding protein, is a cytoplasmic protein with a phosphatidylinositol-4-monophosphate-binding (PtdIns4P) domain and a putative domain for catalysing lipid transfer. In vitro assays show that this lipid-transfer-catalysing domain specifically extracts ceramide from phospholipid bilayers. CERT expressed in LY-A cells has an amino acid substitution that destroys its PtdIns4P-binding activity, thereby impairing its Golgi-targeting function. We conclude that CERT mediates the intracellular trafficking of ceramide in a non-vesicular manner.  相似文献   

17.
18.
D G?rlich  E Hartmann  S Prehn  T A Rapoport 《Nature》1992,357(6373):47-52
To identify components of the mammalian endoplasmic reticulum involved in the translocation of secretory proteins, crosslinking and reconstitution methods were combined. A multispanning abundant membrane glycoprotein was found which is in proximity to nascent chains early in translocation. In reconstituted proteoliposomes, this protein is stimulatory or required for the translocation of secretory proteins.  相似文献   

19.
Rapoport TA 《Nature》2007,450(7170):663-669
A decisive step in the biosynthesis of many proteins is their partial or complete translocation across the eukaryotic endoplasmic reticulum membrane or the prokaryotic plasma membrane. Most of these proteins are translocated through a protein-conducting channel that is formed by a conserved, heterotrimeric membrane-protein complex, the Sec61 or SecY complex. Depending on channel binding partners, polypeptides are moved by different mechanisms: the polypeptide chain is transferred directly into the channel by the translating ribosome, a ratcheting mechanism is used by the endoplasmic reticulum chaperone BiP, and a pushing mechanism is used by the bacterial ATPase SecA. Structural, genetic and biochemical data show how the channel opens across the membrane, releases hydrophobic segments of membrane proteins laterally into lipid, and maintains the membrane barrier for small molecules.  相似文献   

20.
The signal recognition particle (SRP) receptor is an integral membrane protein of the endoplasmic reticulum which, in conjunction with SRP, ensures the correct targeting of nascent secretory proteins to this membrane system. From the complementary DNA sequence we have deduced the complete primary structure of the SRP receptor and established that its amino-terminal region is anchored in the membrane. The anchor fragment and the cytoplasmic fragment contribute jointly to a functionally important region which is highly charged and may function in nucleic acid binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号