共查询到20条相似文献,搜索用时 15 毫秒
1.
在中学数学的学习中,数形结合是一种重要的数学思想方法.数是形的抽象概括,形是数的直观表现.华罗庚先生指出:数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休. 相似文献
2.
在中学数学的学习中,数形结合是一种重要的数学思想方法。数是形的抽象概括。形是数的直观表现。华罗庚先生指出:数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。 相似文献
3.
数形结合是数学解题中常用的思想方法,用数形结合方法可以使复杂问题简单化、抽象问题具体化;能够变抽象的数学语言为直观的图形、抽象思维为形象思维,有助于把握数学问题的本质。笔者结合自己教学实际,通过"以数辅形"和"以形助数"这两大题型的具体分析,揭示"数"与"形"之间的紧密关系,最终使问题优化并获得解决。 相似文献
4.
在中学的数学教学中,数和形是数学中两个最基本的概念,它们既是对立,又是统一的。每一个数量关系,都能通过生动形象的几何图形来直观地表达和描述;而每一个图形中都蕴含着与他们的形状、大小、位置密切相关的数量关系。数形结合的实质就是将抽象的数学语言与直观的图形结合起来,使抽象的思维和形象思维结合起来,在解决代数问题时,想到它的几何图形,从而启发思维,找到解题之路;或者在研究图形时,利用代数的性质,解决几何的问题。实现抽象概念与具体形象的联系和转化,化难为易。 相似文献
5.
7.
肖军委 《中国新技术新产品精选》2010,(15):234-234
数形结合的思想在我们高中数学是非常重要的思想之一,简单来说就是数与形的有机的结合来解决问题,达到数与形的完美的结合,以数制型,以形得数。在高考试题中有相当一部分题目都用到该思想,它常用来研究方程的根,讨论函数的值域(最值)及求变量的取值范围等题目,对这类内容的选择题填空题,数形结合特别有效,故应引起我们的重视。我现在将它作为一条复习的轴线,看一下它与各章的知识点的联系,做一小结,现试举几例它在我们的各个章节试题,以便大家进一步的完善总结,以达到熟练的运用该思想起到抛砖引玉的效果。 相似文献
8.
杨渭清 《西安联合大学学报》2003,6(4):71-73
根据数学问题的条件与结论之间的内在联系,分析其代数含义,揭示其几何意义,使数量关系和空间形式巧妙地结合起来,实现数量关系和空间形式的相互转化,即通过数形结合的基本方法,达到探求解题思路,解决问题的目的,体现解析几何的思想方法在解题中的应用. 相似文献
9.
黄刚 《曲靖师范学院学报》1998,(Z3)
数学是研究现实世界的数量关系(数)和空间形式(形)的学科,依据初中学生思维认识形成规律把数形结合思想方法形成过程分为“感受——认识——形成——内化四个由低到高的层次”。这是初中数形结合思想形成的宏观过程。 相似文献
10.
连永清 《阴山学刊(自然科学版)》2000,15(5):70-71
用数形结合的思想解题是高考数学试题中的基本方法之一,数形结合的思想是将抽象的数学内容与直观的图形结合起来,通过对图形的处理,发挥直观对抽象的支柱作用,从而在解题过程中,化难为易,化复杂为简单,提高解题效率。 相似文献
11.
12.
13.
数形结合是一种重要的数学思想和解题方法,在数学教学中有着广泛的应用。本文重点结合职业中学数学的教学,就数形结合思想在教学中的应用进行了初步阐述和研究。 相似文献
14.
程海霞 《安庆师范学院学报(自然科学版)》2009,15(2):120-122
数学家华罗庚教授曾作诗:数形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,割裂分家万事非。 相似文献
15.
数形结合思想方法是研究数学问题的重要方法,有些数量关系,借助几何图形的直观描述,可以使许多抽象的概念和复杂的关系形象化、简单化。数形有机的结合,可以达到简捷、明了的效果。 相似文献
16.
数形结合解决难题,直观入微。其含义如下:根据数的结构特征,利用图形的特征和规律解决问题;将图形信息部分转换成代数信息,用数量关系式进行研究。 相似文献
17.
“数”即数量,“形”即形状,它们反映了事物的两个侧面。“数无形,少直观;形无数,难入微。”(华罗庚语)。因此,在化学教学中有必要将数形结合起来,通过“以形助数”(借助形的几何直观性来阐明数之间的某种关系)或“以数解形”(僭助于数的精确性来阐明形的某些属性),可以使复杂问题简单化,抽象问题具体化,可以培养学生的抽象思维能力和形象思维能力的结合。 相似文献
18.
19.
贺家兰 《渝西学院学报(自然科学版)》2007,(1)
中学数学新课程标准要求全新的教学观念和活动体系,教学不应只是一种简单的知识授受活动,而应是师生双向心系沟通与加工的过程.笔者分别从数与代数、空间与图形、统计与概率等视角对“数形结合”思想进行了分析,以期为人们对新课程标准的理解与执行提供一些参考. 相似文献
20.
通过应用"建构"的思想方法,在函数教学中数形结合,培养学生的想象能力和学习能力,为学生掌握函数的性质,灵活运用数形结合思想解决问题提供新的角度. 相似文献