首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
实现厌氧同时反硝化产甲烷工艺(SDM)并充分利用废水中的有机碳源,关键是如何减小乃至消除硝态氮(NOx-N)对产甲烷菌的抑制作用.目前,SDM运行效果的两个影响因素(进水COD/NOx-N和好氧反应器出水回流比)已经成为研究热点.此外,还介绍了厌氧同时反硝化产甲烷工艺的微生物种群结构研究,并进行了前景展望.  相似文献   

2.
美国伊利诺斯大学在美国宇航局和美国国家科学基金会的支持下,由C. R. 沃斯(Woese)博士指导,鉴别了一种产甲烷微生物——甲烷产生菌(Methanogen)。甲烷产生菌是能从CO_2和H_2合成甲烷的一系列厌气性细菌的总称。目前,在沼泽、温泉、污水处理场、牛及其他反刍动物的消化器官  相似文献   

3.
《科学通报》2021,66(3):310-318
酿酒酵母是合成多种天然产物的微生物细胞工厂,合理利用酿酒酵母底盘细胞内源的代谢途径可生产高附加值的生物医药、食品保健和精细化学品类产物.如何精细调控和优化酿酒酵母胞内代谢流是实现目标化学物高产量、高产率和高转化的关键问题.乙酰辅酶A是中心代谢和天然产物合成的基本前体,精细调控乙酰辅酶A的合成是实现目标化合物高产的重要策略;改造酿酒酵母的甲羟戊酸途径,引入外源途径酶,表达萜类合成酶生产不同种类的萜类化合物;优化脂肪酸合成途径合成特定链长的脂肪酸及脂肪酸衍生物.本文总结了强化酿酒酵母中乙酰辅酶A积累的代谢工程策略,重构甲羟戊酸途径、脂肪酸途径从头合成天然萜类化合物和脂肪酸衍生物的研究进展,为利用酿酒酵母底盘细胞生产天然产物的相关研究提供代谢工程改造策略.  相似文献   

4.
《科学通报》2021,66(22):2802-2819
为适应未来基础设施和工业化建造需求,如何改变传统土木工程结构和材料组成,打造全新的具有智能能力的基础设施,已经成为新的研究热点.工程结构的抗损坏能力直接影响国家的社会成本和经济效益.为了减少维修养护费用、提升结构的服役寿命,一种可行的方案是建造能够进行损伤自我愈合的拟生命系统.近几年来,微胶囊、电沉积、感应加热、微生物自愈合等技术被应用于土木工程与道路工程中,有望提升工程结构的耐久性及稳定性,延长服役寿命.但是,为提升自愈合工程材料的使用性能、精准预估裂纹扩展轨迹、精确预测材料的使用寿命,需要进一步从机理上解释自愈合行为.本文首先总结了自愈合材料在土木工程中应用的发展历程及研究进展,随后从损伤力学和断裂力学角度出发,分析了在解释和预测自愈合行为时所面临的若干力学问题,并对现有考虑自愈合效应的本构模型及数值算法进行了梳理.为了进一步明确各内外因素对裂纹扩展-愈合的正负耦合效应,从力学角度提出了亟待解决的问题与挑战.  相似文献   

5.
紫茎泽兰产氢产甲烷联合发酵的研究   总被引:1,自引:0,他引:1  
尹芳  胡觉  张无敌  李建昌  徐锐  陈玉保  刘士清 《科学通报》2010,55(36):3469-3476
以脱毒预处理的紫茎泽兰为原料,调节发酵体系的pH,可实现紫茎泽兰产氢产甲烷联合发酵.pH为4.7~5.5的情况下先产氢后调至中性产甲烷,对比实验为pH6.5~7.5的情况下先产甲烷后调节至酸产氢.实验结果表明:先产氢后产甲烷实验的TS和VS原料利用率均高于先产甲烷后产氢实验,且纤维素、半纤维素和木质素利用率也高出32.60%,45.80%和50.26%;紫茎泽兰产氢阶段终点可根据实验组、对照组产气趋势是否趋于一致来进行判断;先产氢后产甲烷实验的产甲烷速率比先产甲烷后产氢实验高出18.85%,有效缩短了发酵周期;先产氢后产甲烷实验实现了能源利用效率的68.54%,而先产甲烷后产氢实验只实现了能源利用效率的15.35%.实验得出,与先产甲烷后产氢发酵、单独产甲烷发酵、单独产氢发酵相比,紫茎泽兰联合产氢产甲烷发酵是理想的紫茎泽兰利用途径之一.  相似文献   

6.
高丽华 《科学通报》1995,40(24):2286-2286
由于在光通讯、光计算机、光能转换等方面的应用前景,合成有大的非线件光学材料是当前十分活跃的高技术领域.在有机物中,给体受体取代的偶氨化合物,由于它们具有很高的二阶非线性光学效应以及作为一类新的、有前景的电光材料而倍受重视.1988年Lupo等首次报道了有关芪唑盐(C_(16)H_(33))_2NC_6H_4CH=CHC_5H_4N~+CH_3I~-的LB膜研究,结果表明它是一种具有高二阶非线性光学极化率的有机分子,其β值为2 X 10~(-27)(esu),比LiNbO_3大2~3个数量j  相似文献   

7.
潘杰 《科学通报》1992,37(7):653-653
5′-核苷酸酶(EC 3.1.3.5)催化5′-核苷单磷酸水解生成相应的核苷和正磷酸。该酶在人和动物组织细胞中主要分布在质膜上,在细胞分级分离研究中常被用作质膜的标志酶。然而该酶在植物细胞内的定位及其与抗冷性的关系,至今尚未见报道。低温会导致不抗冷植物细胞膜系统、细胞器和细胞骨架组分的异常;低温冷害对水稻线粒体膜的流动性的影响及ATP含量的变化也有过报道。本文以不同抗冷性的水稻品种为材料,研究5′-核苷酸酶在水稻幼叶细胞中的定位及其活性在冷害中的变化,为阐明冷害机理提供实验依据。  相似文献   

8.
青蒿素合成生物学及代谢工程研究进展   总被引:3,自引:0,他引:3  
曾庆平  鲍飞 《科学通报》2011,56(27):2289-2297
青蒿素生物合成途径仅见于青蒿, 但其"上游"途径为真核生物所共有, 可望通过"下游"途径重建, 在真核微生物(如酵母)中全合成青蒿素. 过去10 年来, 青蒿素合成基因被国内外研究团队陆续克隆并导入酿酒酵母细胞, 已成功合成青蒿酸及双氢青蒿酸等青蒿素前体. 由于酵母缺乏适宜的细胞环境, 尚不能将青蒿素前体转变成青蒿素. 因此, 青蒿依然是青蒿素的唯一来源, 凸显出继续开展青蒿种质遗传改良的必要性. 我国科学家采用"开源"或"节流"等策略,已相继培育出多种转基因青蒿植株或品系, 为实现青蒿素的高产、稳产奠定了坚实的基础. 同时, 青蒿素生物合成的限速步骤尤其是终端反应机制已基本得到阐明, 有助于开展青蒿素形成与积累的环境模拟及仿生, 从而为彻底缓解青蒿素的供求矛盾创造先机. 本文最后讨论了产青蒿素前体微生物专利的作用及中国避免这些专利壁垒的方法.  相似文献   

9.
近年来,全氟和多氟烷基物质(per-and polyfluoroalkyl substances, PFASs)污染已成为全球性环境问题. PFASs的生产和使用导致其通过多种途径进入并持久存在于环境中.一方面, PFASs会对环境中的微生物产生毒性效应,主要毒性机制包括:增加膜透性、引起氧化应激和诱导DNA损伤,从而使得对PFASs较为敏感的微生物活性降低甚至生长受到抑制.长期作用下, PFASs可以改变微生物群落的组成和结构,并且还有基于微生物的食物链传递风险.另一方面,微生物及其胞外分泌物所形成的生物被膜可以吸附环境中的PFASs,并利用自身分泌的胞外酶(如CSO3-键裂解酶、磷酸酯酶和聚氨酯酶),通过铁氨氧化、脱硫和水解等反应转化或降解PFASs.因此,本文系统阐述PFASs与环境微生物的相互作用,重点总结PFASs对细菌的细胞毒性;分析PFASs对环境(土壤、淡水、海洋)微生物群落组成、结构及生态系统物质循环的影响;深入讨论PFASs的微生物转化/降解途径;并结合存在的问题及挑战(如PFASs通过细菌进入食物链、PFASs对微生物群...  相似文献   

10.
一种有机新晶体——GO单晶的生长、结构及光学性质   总被引:1,自引:0,他引:1  
吕孟凯 《科学通报》1988,33(1):13-13
NH_2CH_2COOH是一种较活泼的有机化合物。据报道,它可以与H_2SO_4,H_2BeF_4,AgNO_3,HNO_3,CaCl_3等化合物形成单晶。最近,我们首次发现NH_2CH_2COOH还可以与H_2C_2O_4化合形成一种新化合物——甘氨酸草酸盐(分子式为NH_2CH_2COOOH·H_2C_2O_4,简称GO)。GO单晶的培育及其性能在文献中均未见报道.本文简要报道了这种有机新晶体的生长、结构及其光学性质。  相似文献   

11.
常青  张展华  刘雅琪  张彤 《科学通报》2023,(Z2):3792-3808
生物固碳是地球碳循环过程的重要组成部分,也是控制碳排放的有效方法.在海洋深处、水体沉积物、地表土壤甚至极端环境中,化能自养微生物可通过硫化物、氨、氢气等还原性物质的氧化获取化学能固定无机碳.诸多研究表明化能自养微生物的固碳功能对吸收大气、海洋、湿地、土壤和极端环境中的CO2具有重要作用,特别是对深海、湖泊深层等无光环境以及深海热液区等极端生境中初级生产的重要贡献.然而,目前区域生态系统碳汇核算模型的建立普遍忽视了化能自养微生物类群及固碳潜能,低估自然生态系统实际碳汇能力.本文基于化能自养微生物固碳研究的现状,阐述了化能自养微生物在不同生态系统中的固碳潜能,介绍了参与化能自养固碳过程的主要微生物类群的代谢特征及固碳途径,重点分析了基于固碳途径和能量代谢提升自养微生物固碳效率的人工调控策略及应用进展.最后,本文对区域生态系统化能自养微生物碳汇功能的精准量化、开发人工增汇技术等未来研究方向进行了展望,为认识和调控化能自养微生物驱动的自然碳汇过程,助力实现“双碳”战略目标提供参考.  相似文献   

12.
岩溶生态系统中微生物对岩溶作用影响的认识   总被引:6,自引:0,他引:6  
连宾  袁道先  刘再华 《科学通报》2011,56(26):2158-2161
从土壤及岩生微生物影响岩溶作用的速度和微生物捕获CO2 及诱导碳酸盐形成等方面分析了岩溶生态系统中微生物对岩溶作用的影响, 指出岩溶作用的速度和碳汇稳定性以及岩溶地区的碳循环与微生物有密切关联. 提出需要结合不同生态环境来定量研究自然条件下微生物对岩溶作用的影响, 以揭示生物对环境变迁的响应及其与岩溶效应之间的关系.  相似文献   

13.
成波  陈兴 《科学通报》2020,65(27):2984-2997
细胞表面覆盖着一层被称为糖萼的聚糖,这些聚糖链最末端的单糖通常是唾液酸.唾液酸化聚糖参与调控各种重要的生理和病理过程.非天然糖代谢标记为在活细胞和活体水平对唾液酸化聚糖进行分析提供了一个有力方法.本文首先对非天然糖代谢标记和生物正交化学的发展历史和研究现状做简单的介绍.接着,结合本课题组相关工作,对非天然糖代谢技术在研究上皮-间充质转变、神经干细胞分化、心肌肥大等过程中的动态唾液酸化的研究进展进行介绍和讨论.为了拓展非天然糖代谢标记的应用,我们开发了蛋白质特异性聚糖成像、细胞及组织选择性聚糖标记、聚糖拉曼成像、新型非天然糖等工具.最后对唾液酸化聚糖的化学生物学研究前景进行了展望.  相似文献   

14.
红曲菌(Monascus spp.)又称红曲霉,是我国传统特色的药食同源发酵微生物.红曲菌可产生天然食品着色剂红曲色素(Monascus pigments, MPs)、降血脂成分莫纳可林K(monacolin K, MK)以及丰富的淀粉酶和酯化酶等酶系,红曲菌的发酵产品红曲在我国有近2000年的应用历史.但是某些红曲菌株也可产生真菌毒素桔霉素(citrinin,CIT),污染红曲产品,导致食品安全问题.研究人员通过不懈努力,目前已经解决了红曲产品中CIT污染的问题,关于MPs、MK和CIT等红曲菌主要次级代谢产物生物合成途径及其调控机理的研究也取得了重大突破.同时,研究还发现,红曲菌具有独特的繁殖调控机制以及对光照和磁场(光磁)的感应机理.本文系统梳理了近30年来所取得的关于红曲菌独特繁殖调控与光磁感应机理,以及MPs、MK和CIT等主要次级代谢产物的生物合成途径及其调控机制的研究进展,并展望了红曲菌的未来研究方向,最后阐述了红曲行业面临的挑战及其应对策略.  相似文献   

15.
水中典型全氟化合物的吸附行为   总被引:1,自引:0,他引:1  
周琴  栾萱  潘纲 《科学通报》2012,(17):1526-1532
以全氟辛烷磺酸/羧酸盐(PFOS/PFOA)为代表的全氟化合物(PFCs)以不同的污染水平广泛分布于全球范围的环境介质和生物体内,已经严重危害到人类健康.相对于大气环境的污染,水相中PFOS和PFOA的污染受到更多的关注.由于PFOS/PFOA较高的化学稳定性,传统的微生物降解及光降解等技术都无法有效去除水相中的PFOS/PFOA,这也给其控制技术的研发带来了一定程度的困难.因此,如何有效控制和去除PFCs的污染已经成为亟待解决的热点问题.吸附技术由于其低成本、高效率、易操作和可再生循环利用等特点,已经被证明是去除水相中PFOS/PFOA的有效方法.因此,本文结合本研究组前期的研究成果及其他研究组已有的报道,较全面地综述了近年来国内外针对PFOS/PFOA在不同吸附材料上的吸附行为的研究进展,包括自然沉积物和土壤对PFOS/PFOA的吸附-解吸行为及其影响因素,以及商业、人工制备吸附剂对PFOS/PFOA的吸附性能和机理,并对该领域的发展前景进行了展望.  相似文献   

16.
核酸是重要的生命物质,对核酸序列的选择性切割是当前基因工程的关键问题.在生理条件及非酶存在下,核酸非常稳定(磷酸二酯键在pH 7,25℃时的半衰期为2亿年,因此,近年来研究的人工酶是通过氧化脱氧核糖来切断DNA的,而有关选择性水解断裂核酸的报道则很少,主要困难是缺乏高效的“分子剪刀”,有关稀土对核酸断裂的研究报道尚不多见.作者曾报道了除Ce(Ⅳ)外,其他稀土对5’-腺嘌呤核苷酸(5’-AMP)及5’-鸟嘌呤核苷酸(5’-GMP)均无明显水解作用,并且过去报道的体系为碱性介质,此时稀土以氢氧化物沉淀形式存在为非均相体系,其应用局限性非常大,因此,寻求可溶性的稀土水解核酸体系就显得非常重要.本文用核磁共振(NMR)和化学法研究了Yb-Ge-132和Pr-Ge-132配合物对5’-AMP及5’-dAMP的断裂作用,指出Yb-Ge-132和Pr-Ge-132使5’-AMP水解为腺苷(A)及无机磷,使5’-dAMP水解为脱氧腺苷(dA)及无机磷,其断裂机制为水解断裂,这对于研究稀土与核酸的作用,寻找新的核酸均相水解体系都具有非常重要的意义.  相似文献   

17.
顾雨薇  李雪  陈硕  于洪涛 《科学通报》2020,65(26):2880-2894
硝酸根去除是海水养殖尾水、反渗透浓水等高盐水处理的重要目标.由于高盐、低碳的特点,微生物技术针对这类水的脱氮效果不佳.电化学还原脱氮可通过电子传递实现硝酸根到氮气的转化,该过程要求较高的电导率且不受有机物含量限制,因此特别适合处理此类水.本文简述了针对高盐低碳水电化学方法的比较优势,介绍了电还原硝酸根过程机理和典型阴极材料,分析了影响阴极性能的因素及其作用规律,并对阴极阳极配合提高产氮气选择性进行了概述.最后总结了电化学去除硝酸根领域的研究进展并展望了发展方向.  相似文献   

18.
汪达  杨喆  卢晓辉  王立章  宋爽  马军 《科学通报》2022,(31):3679-3694
非均相臭氧催化氧化(heterogeneous catalytic ozonation, HCO)技术在难降解有机物去除和提高废水可生化性方面应用广泛.非均相金属氧化物是稳定有效的HCO材料.通过晶面调控手段,可改变金属氧化物催化材料表面原子排列顺序,从而暴露出特定晶面.晶体暴露的晶面种类与比例可显著影响HCO过程中臭氧(O3)分解、污染物降解及消毒副产物生成效率.本文在实验结果和理论研究进展的基础上,系统综述了晶面调控HCO催化材料的合成方法与控制机理、强化HCO过程的增强机理以及其在水处理中的应用,如污染物降解、灭菌及副产物毒性抑制等.最后,针对晶面调控HCO催化材料现有研究的不足和实际应用所面临的挑战,从机理探索和材料开发两方面进行了展望.  相似文献   

19.
乔娟  齐莉 《科学通报》2019,64(13):1330-1339
蛋白质分子印迹技术在蛋白组学、生命科学、生物传感、药学研究及生物样品纯化等领域具有广泛的应用价值并备受关注.不过,由于其分子量较大,蛋白质分子印迹材料在应用中还存在蛋白质的传输扩散效率较低及吸附脱附较难等缺陷.而新出现的刺激-响应型蛋白质分子印迹材料可对外界刺激做出反应,并可进一步通过调控分子印迹材料与生物大分子之间的相互作用来实现目标蛋白质的高效快速捕获及释放,因此其具有重要的应用前景.本文综述了近20年来刺激-响应型蛋白质分子印迹材料的研究进展,并概述了其制备方法、聚合物单体种类、刺激-响应类型及机理,还进一步阐明了刺激-响应型蛋白质分子印迹技术的未来发展方向.  相似文献   

20.
在深地环境中生活着数量庞大且种类众多的微生物,主要是细菌和古菌,并包括真菌和病毒.水-岩相互作用产生的氢气和甲烷是这些微生物主要的能量来源.人类活动改变了深地环境及其微生物群落组成和功能.页岩气是存在于深地页岩中的天然气,开采页岩气所使用的水力压裂技术会对深地微生物产生显著影响,在水力压裂开发的不同阶段,微生物群落结构存在显著差异,产甲烷菌能够提高页岩气产量,而产酸细菌则会造成储层酸化和设备锈蚀,降低页岩气的采收率.核废料是指含有高于安全剂量放射性同位素或被其污染的物质,核废料的安全处置是决定核工业能否持续发展的关键因素.地质处置是目前公认的、唯一可行的长期安全处置半衰期长、高放射性核废料的方式,但是,硫酸盐还原菌的活性会导致储存室的锈蚀,微生物产生的气体也会影响地下空间的气压,这些微生物作用都可能对处置安全产生负面影响.CO_2深地封存可以控制其向大气排放,缓解全球暖化,但深地封存的超临界态CO_2能够引起地下水酸化,加速岩石和矿物的溶解,从而改变深地的化学环境和微生物群落,并对CO_2的长期有效封存产生影响.目前有关人类活动对深地微生物的科学研究均侧重于其短期影响,今后的研究应重点关注其长期影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号