共查询到20条相似文献,搜索用时 0 毫秒
1.
本文用具有环境友好性的甲基三乙氧基硅烷替代甲基三甲氧基硅烷,在水溶剂体系中,利用阳离子表面活性剂制备SiO2气凝胶基体,并以耐高温的聚酰亚胺短切纤维为增强相,制备得到了柔性疏水的SiO2气凝胶复合隔热材料。研究了聚酰亚胺短切纤维含量对复合材料热、力学性能的影响。结果表明:制备得到的SiO2气凝胶复合材料具有纤维状三维骨架结构并且气凝胶基体与增强相之间结合紧密,使得复合材料具有超疏水性,疏水角高达171°;具有良好的隔热保温性能,导热系数在0.021 W/(m·K)~0.0225 W/(m·K)之间,初始热分解高达521℃;具有较好的弹性,压缩20%形变后样品未发生增强相与基体的分离现象,并且卸压后能回弹至12%形变处。随着纤维含量的增加,复合材料里压缩强度(20%形变)逐渐增大,但是回弹率并没有较大的变化。 相似文献
2.
甲基三乙氧基硅烷改性制备疏水SiO_2气凝胶 总被引:2,自引:2,他引:2
采用原位聚合法结合超临界干燥工艺,以正硅酸四乙酯为硅源、甲基三乙氧基硅烷为改性剂制备出疏水型SiO2气凝胶.采用比表面积及微孔物理分析仪、接触角分析仪、热分析仪和红外光谱仪对其性能和结构进行表征.结果表明:所制备出的SiO2气凝胶是接触角为160°、比表面积为674.47 m2/g和孔体积为4.13 cm3/g的疏水型气凝胶.疏水SiO2气凝胶的热稳定温度为244.5℃. 相似文献
3.
《南京工业大学学报(自然科学版)》2016,(2)
以锆酸四丁酯为锆源,采用溶胶-凝胶法结合化学液相沉积(CLD),即在凝胶老化过程中用部分水解的锆酸四丁酯和正硅酸四乙酯进行液相修饰,经过乙醇超临界干燥(SCFD)制备耐高温ZrO_2/SiO_2块体复合气凝胶。采用透射电子显微镜(TEM)、傅里叶红外光谱仪(FT-IR)、X线衍射仪(XRD)、N_2吸附分析仪等仪器表征了ZrO_2/SiO_2复合气凝胶的形貌、表面基团、晶相和孔结构,着重研究其耐热性能。结果表明:制备的ZrO_2/SiO_2复合气凝胶具有优秀的耐温性能,1 000℃处理2 h后,仍为四方相,线收缩率仅为12%,比表面积高达186 m2/g。 相似文献
4.
《南京工业大学学报(自然科学版)》2016,(2)
利用溶胶-凝胶法结合超临界干燥,并经高温热处理工艺制备出自生长锆氧、铝氧纳米纤维增强SiO_2复合气凝胶,通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X线衍射仪(XRD)、N_2吸附-脱附等测试方法对复合气凝胶的结构进行表征,并对试样的力学性能进行验证。结果表明:利用前驱溶液中酸碱不平衡的现象自生长出锆、铝氧纳米纤维,将金属氧化物和SiO_2前驱体在凝胶老化过程中复合成型后再经高温转化的方式实现增强纤维与气凝胶本体的结合,制备出轻质、高强度、耐高温、耐氧化的纳米纤维增强SiO_2复合气凝胶,压缩强度可达到6MPa以上。 相似文献
5.
CO_2超临界干燥制备SiO_2气凝胶及其表征 总被引:1,自引:0,他引:1
以正硅酸乙酯为原料,应用溶胶—凝胶两步催化法制备SiO2醇凝胶,醇凝胶用CO2超临界干燥后得到SiO2气凝胶.以比表面积和密度为评价标准,以CO2流量、超临界温度、干燥时间和超临界压力为实验因素,设计了四因素三水平的正交实验,研究CO2超临界干燥的工艺条件,并运用SEM、TEM、BET、FTIR对SiO2气凝胶结构、形貌及化学组成进行分析.结果表明:优化的工艺条件为CO2流量12 kg.h-1,干燥压力13 mPa,超临界温度45℃,干燥时间6 h.制得SiO2气凝胶的比表面积为927.37 m2.g-1,密度是0.195 6 g.cm-3,由球形纳米颗粒堆积而成,颗粒尺寸范围在0~20 nm左右,孔径分布主要集中在10 nm左右,是典型的纳米孔材料. 相似文献
6.
以E - 40 (多聚硅氧烷 )为硅源 ,HF为催化剂 ,采用异丁醇为干燥介质 ,用溶胶凝胶法在亚临界条件下制备了SiO2 气凝胶 .用扫描电子显微镜 (SEM)、孔径分布测定仪、比表面积测试 (BET)等方法对其微结构进行了研究 .结果表明 ,所制备的SiO2 气凝胶具有纳米网络结构 (平均颗粒大小约 1 0nm ,平均孔径约 1 4.5nm)和大比表面积(约 70 8.3m2 ·g- 1 ) .由于亚临界干燥使得制备压力从 6.4MPa降低到 2 .3MPa ,降低了制备成本 ,从而有利于气凝胶的商业应用 . 相似文献
7.
《陕西师范大学学报(自然科学版)》2010,(6)
采用溶胶-凝胶法和酸-碱两步催化过程,以正硅酸乙酯(Tetraethyl Orthosilicate,TEOS)为前驱物,N,N-二甲基甲酰胺(N,N-dimethylformamide,DMF)为干燥控制化学添加剂、三甲基氯硅烷(Trimethylchlorosilane,TMCS)为疏水改性剂,制得高比表面积的疏水性SiO2气凝胶.利用X射线衍射仪(X-ray Diffraction,XRD)、扫描电子显微镜(Scanning Electron Microscopy,SEM)、红外光谱仪(Fourier Transform Infrared,FTIR)、N2物理吸附仪、热重差热分析仪(Thermo Gravimetric and Differential Thermal Analyzer,TG-DTA)对样品进行了测试和表征.结果表明:制得的疏水性SiO2气凝胶呈白色粉末状,为非晶态的网络多孔结构,孔径集中分布在35~40 nm之间,且组成骨架的颗粒呈大小较均匀的球形.SiO2气凝胶表面存在大量的疏水基团—CH3,在304.08~430.45℃时—CH3发生氧化,气凝胶由疏水性转为亲水性. 相似文献
8.
针对SiO2气凝胶制备和应用中的瓶颈,从提高气凝胶本体强度、纤维增强技术两个方面对SiO2气凝胶复合材料增强增韧改性技术研究进行了综述,并对其发展进行了展望。 相似文献
9.
以氨水作为间苯二酚和甲醛反应的催化剂,经溶胶-凝胶制备有机气凝胶,再经过常温常压干燥、高温碳化形成碳气凝胶。采用X射线衍射、比表面仪、扫描电镜能谱分析仪对样品进行表征。结果表明:以氨水为催化剂所得碳气凝胶比表面积在900m2/g左右,呈现连续颗粒状。 相似文献
10.
《华南理工大学学报(自然科学版)》2017,(2)
以聚酰亚胺短纤和沉析纤维为原料,通过湿法抄造结合热压和树脂浸渍的方法制备聚酰亚胺纤维/环氧树脂纸基复合材料,研究了热压温度、热压压力以及环氧树脂浸渍量对聚酰亚胺纸基复合材料性能的影响.结果表明,热压处理增加了聚酰亚胺纤维间的接触面积,使聚酰亚胺纤维纸的力学性能和电学性能增强;采用环氧树脂浸渍处理,可以进一步增加聚酰亚胺纸基复合材料的力学性能(抗张指数提高了1.25倍)和电学性能(耐压强度提高了17%);当热压温度为210℃、热压压力为120 N/mm、浸渍量为20%时,所制备的聚酰亚胺纸基复合材料具有较好的力学性能和电学性能,其抗张指数为57.5 N·m/g,撕裂指数为6.86 m N·m2/g,耐压强度为12.3 k V/mm,在航空航天、绝缘阻隔、环境保护等领域具有潜在的应用前景. 相似文献
11.
《长安大学学报(自然科学版)》2010,(4)
以廉价水玻璃为硅源,综合运用离子交换法和溶胶凝胶法,在常压下制备出低密度的二氧化硅气凝胶;试验研究了凝胶体系pH值、干燥温度、溶剂交换和表面修饰对凝胶时间、二氧化硅气凝胶密度、孔隙率和微观结构的影响。结果表明:当凝胶体系pH值为6时,干燥工艺为50℃干燥84 h,60℃干燥72 h;采用三甲基氯硅烷(TMCS)与正己烷(n-hexane)、异丙醇(IPA)的混合溶液进行表面修饰时,所得气凝胶的密度可低至0.2 g/cm3,孔隙率可高达90.1%,孔径为20~40 nm。 相似文献
12.
《南京工业大学学报(自然科学版)》2016,(2)
以玄武岩纤维为增强相,与SiO_2溶胶复合,经超临界干燥制备疏水SiO_2气凝胶复合材料。采用N_2吸附法、接触角分析仪、傅里叶红外光谱仪、激光法导热仪、万能试验机对玄武岩纤维增强SiO_2气凝胶复合材料的结构和性能进行表征。结果表明:玄武岩纤维增强SiO_2气凝胶复合材料的比表面积为398.31 m~2/g、孔体积为1.076 9cm~3/g、接触角为152°、吸水率为1.7%,材料具有良好的隔热性能和耐低温性能,其常温热导率为0.032 W/(m·K),在深冷条件下体积没有发生明显的收缩。玄武岩纤维的加入提供了力学支撑,使材料具有良好的力学性能,其抗压强度为0.37 MPa(10%应变)、0.85 MPa(25%应变)和1.65 MPa(50%应变)。 相似文献
13.
以尿素为氮源,通过溶胶-凝胶法并结合超临界干燥、惰性氛围碳化、碳热还原和空气除碳等工艺制备块状氮化硅(Si_3N_4)气凝胶。通过不同温度热处理,研究Si_3N_4气凝胶的形成过程及机制。采用X线衍射仪(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X线光电子能谱仪(XPS)、N_2吸附-脱附仪分析材料的相组成、微观结构和孔结构等。结果表明:当热处理温度为1 500℃时,体系中以Si_3N_4相为主,继续升高热处理温度至1 600℃时,Si_3N_4相转化为SiC相。Si_3N_4气凝胶中Si_3N_4相和SiO_2相分别占74.4%和25.6%。Si_3N_4气凝胶以Si_3N_4纳米颗粒的形式存在,其粒径为20~40 nm,孔径为20~40 nm,比表面积高达519.58 m~2/g。Si_3N_4气凝胶的室温热导率为0.045 W/(m·K),其形成机制是基于C、SiO_2和N_2之间的气-固(VS)生长。 相似文献
14.
《云南师范大学学报(自然科学版)》2015,(5)
以Na2SiO3·9H2O和H2SO4为原料,Na2SO4为分散剂,聚乙二醇(PEG)为表面活性剂,利用化学沉淀法制备纳米SiO2.讨论了溶液的pH值和灼烧温度等因素对纳米SiO2性质的影响.采用热重分析仪(TG)、X-射线粉末衍射仪(XRD)、透射电子显微镜(TEM)及红外光谱仪(IR)等手段对制得的纳米SiO2进行了分析和表征.结果表明:在pH为7~8,灼烧温度为500℃时可得到平均粒径25nm的无定形SiO2颗粒. 相似文献
15.
以正硅酸乙酯为原料,采用溶胶-凝胶法及超临界流体干燥技术制备了密度为11kg/m3的低密度二氧化硅气凝胶块体材料,并与密度为25kg/m3和38kg/m3的二氧化硅气凝胶块体材料进行性能对比。采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、BET等检测方法对样品的微观结构进行表征,对比了不同密度低密度气凝胶的微观结构,并测试了不同温度下的导热系数。结果表明:相比于密度更大的气凝胶材料,11kg/m3低密度气凝胶具有更为纤细的骨架结构和更大的孔洞尺寸,以及较小的比表面积,室温条件下具有最大的导热系数;在气凝胶密度小于40kg/m3的范围内,呈现出密度越小,导热系数越大的规律。 相似文献
16.
《中南大学学报(自然科学版)》2015,(6)
以正硅酸乙酯(TEOS)为硅源,三甲基氯硅烷(TMCS)为表面修饰剂,采用酸碱两步催化溶胶-凝胶法和常压干燥法,通过在凝胶中填充适量正己烷(N-hexane)控制溶胶-凝胶过程,使凝胶孔洞趋于均匀,提高凝胶溶剂置换和表面改性效率,制备高性能Si O2气凝胶,制备工艺周期为30 h。采用BET,SEM和FT-IR等对样品进行表征。研究结果表明:正己烷填充量为0.2(TEOS与N-hexane物质的量比为1:0.2),制备周期最短,制备出的样品具有最大比表面积(972.5 m2/g)、最大孔容(2.9 cm3/g)和最小密度(0.08 g/cm3),疏水性最佳。 相似文献
17.
射频磁控溅射制备SiO_2薄膜及性能表征 总被引:1,自引:0,他引:1
采用射频磁控溅射技术,制备4种不同溅射时间的SiO2薄膜.用XRD、PL、FTIR、UV-Vis等对薄膜的微结构、发光、红外吸收以及透、反射进行表征.结果表明:SiO2薄膜仍呈四方晶体结构,平均晶粒尺寸在17.39~19.92nm之间;在430nm附近出现了发光峰,在1049~1022cm-1之间出现了明显的红外吸收峰,且随着溅射时间的增加发生红移;在可见光范围内平均透射率大于85%. 相似文献
18.
《南京工业大学学报(自然科学版)》2016,(2)
采用溶胶-凝胶法和乙醇超临界干燥工艺,以无机铝盐为原料,制备完整块状的SiO_2-Al_2O_3复合气凝胶。通过傅里叶红外光谱仪(FT-IR)和X线衍射仪(XRD)研究气凝胶在热处理过程中物相结构的变化;采用扫描电子显微镜(SEM)和透射电子显微镜(TEM)对气凝胶的表面形貌和组织结构进行观察;采用N2吸附-脱附测试来研究热处理过程中气凝胶孔结构的变化。结果表明:SiO_2-Al_2O_3复合气凝胶中SiO_2相主要以无定形形式存在,而Al_2O_3相主要以针叶状或长条状的勃姆石多晶形式存在,当温度达到1 100℃时,复合气凝胶中开始产生莫来石相。随着热处理温度的升高,SiO_2-Al_2O_3复合气凝胶的比表面积逐渐减小,直到1 000℃时,比表面积仍高达416.23 m~2/g,同时高温热处理改善了气凝胶内部网络结构,使孔径分布更加均匀。 相似文献
19.
以正硅酸乙酯为原料,应用溶胶-凝胶两步催化法制备SiO2醇凝胶,醇凝胶用CO2超临界干燥后得到SiO2气凝胶.以比表面积和密度为评价标准,以CO2流量、超临界温度、干燥时间和超临界压力为实验因素,设计了四因素三水平的正交实验,研究CO2超临界干燥的工艺条件,并运用 SEM、TEM、BET、FTIR对SiO2气凝胶结构、形貌及化学组成进行分析.结果表明:优化的工艺条件为CO2流量12 kg·h-1,干燥压力13 mPa,超临界温度45 ℃,干燥时间6 h.制得SiO2气凝胶的比表面积为927.37 m2·g-1,密度是0.195 6 g·cm-3, 由球形纳米颗粒堆积而成,颗粒尺寸范围在0~20 nm左右,孔径分布主要集中在10 nm左右,是典型的纳米孔材料. 相似文献
20.
以工业水玻璃为硅源,采用溶胶-凝胶和共沸蒸馏的方法在常压下制备SiO2气凝胶,研究制备条件对SiO2气凝胶性能的影响.结果表明,当溶液体系的pH值为4.5,添加2 mL甲酰胺作为干燥控制化学添加剂(DCCA),并以正丁醇与凝胶中的水为共沸蒸发介质时,所制备的SiO2气凝胶具有典型的气凝胶结构特征,经分析SiO2气凝胶的... 相似文献