首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
本文给出了约束矩阵方程AXB=D,R(X)T,N(X)S~解的一种紧凑形式的Cramer法则,其中A∈Cm×n,B∈Cp×q,D∈Cm×q,T、~S分别是Cn、Cp的子空间。  相似文献   

2.
矩阵的 Drazin 逆是由 M.P.Drazin 最早提出的结合环和半群中的拟逆的一个特例。设 A∈C~(n×n),则存在唯一的 X∈C~(n×n)满足(1)(2)(3)其中 K 是某一个非负整数,称 X 为 A 的 Drazin 逆,记作 A~D。满足(1)的最小非负整数 k 称为 A的指数,记 Ind(A)=k。A~k 的秩称为 A 的核秩,记作 core-rank(A)=rank(A~k),其中 K=Ind(A)。A~D 有重要的谱性质,它在差分方程、微分方程中有重要的应用。R.E.  相似文献   

3.
矩阵张量积数值半径的一个不等式和一个等式   总被引:2,自引:0,他引:2  
借助矩阵张量积和矩阵数值半径的性质,证明了不等式r(A1(×)…(×)Ak)≥∏ki=1r(Ai)和等式r(A(×)B)=r(B(×)A),其中A1,…,Ak,A,B∈L(U).同时,举例说明了不等式r(k(×)A)≤rk(A)不成立.而当A1,…,Ak为正规阵时,有r(A1(×)…(×)Ak)=∏ks=1r(As).  相似文献   

4.
设R是有单位元的交换环,A,B是R上的单式代数,M是非零(A,B)-单式双模,且作为A,B-模都是忠实的.记T=(A M0B)={(a m0b)a∈A,b∈B,m∈}M为A,B,M构成的三角代数.利用三角代数T上导子的性质,给出T上分别满足广义恒等式D([X,Y])=k[X,Y]和D([X,Y])=k[D(X),Y]的导子结构,以及满足广义恒等式D(X。Y)=kX。Y和D(X。Y)=kD(X)。Y的导子结构,其中k为R中单位.  相似文献   

5.
设k为大于1的正整数,考虑C×R上的复向量场 Z=α/αZ ikZ~(K-1)Z~k(α/αt) Z=α/αZ-ikZ~(k-1)Z~k 令L_a=-1/2(ZZ ZZ)-α/2[z,z]其中常数a∈C.[,]为交换子(李括号)定理:设α≠±(2m/k 1),m=0,1,2…,(z,t)∈C×R,(W,S)∈C×R,记A=1/2(|z|~(2k) |w|~(2k) i(t-s)),令p=  相似文献   

6.
域上2×2三角矩阵空间保可交换的加法映射   总被引:1,自引:0,他引:1  
F是任意的一个域,T2(F)表示F上2×2三角矩阵代数,刻画了T2(F)到自身满足f(A)f(B)=f(B)f(A),当且仅当AB=BA的加法满射f的形式,同时得到T2(F)到自身满足A1A2…Ak=AkAk-1…A1,当且仅当g(A1)g(A2)…g(Ak)=g(Ak)g(Ak-1)…g(A1)的加法映射g形式和T2(F)到自身满足A1A2…Ak=Aτ(1)Aτ(2)…Aτ(k),当且仅当h(A1)h(A2)…h(Ak)=h(Aτ(1))h(Aτ(2)2))…h(Aτ(k))的加法映射h形式,其中τ∈Sk,Sk是k元对称群.  相似文献   

7.
设Dn(R),Pn(R)分别是Rn×n上的非奇异对角矩阵、置换矩阵的集合,Gn(R)={X=U1U2...Ut|Ui∈Dn(R)∪Pn(R)}.证明了矩阵乘法下的群Gn(R)可表为Dn(R)与Pn(R)的乘积.如果B=UAV(U,V∈Gn(R)),则称A与B是G-等价的,矩阵方程Φ(X)=1/nJn的实数解在G-等价下具有不变性.  相似文献   

8.
关于矩阵张量积数值半径的两个问题   总被引:2,自引:0,他引:2  
借助矩阵张量积和矩阵数值半径的性质,证明了不等式r(A1 … Ak)≥ ki=1r(Ai)和等式r(A B)=r(B A),其中A1,…,Ak,A,B∈L(U).同时,举例说明了不等式r(k A)≤rk(A)不成立,而当A1,…,Ak为正规阵时,有r(A1 … Ak)= ks=1r(As).  相似文献   

9.
运用上下解方法和拓扑度理论研究了一阶常微分方程多点边值问题{u'(t)=f(t,u(t)),t∈[0,T],u(0)+Σm k=1a_ku(t_k)=c多个解的存在性,其中c∈R,t_k(k=1,2,3,…,m)满足0t_1t_2…t_mT,a_k0均为给定常数,并且满足1+Σm k=1a_k0,f∈C([0,T]×R,R)。实例说明了结果的正确性。  相似文献   

10.
本文考虑如下问题:问题Ⅰ(a)给定X∈Rn×p p,y∈Rm×p p,A=diag(λ1Ik1,λ2Ik2,…,λnIkn)∈Rp×p且k1 k2 … k1=p,λ1,…,λ1互异.求矩阵A,B∈Rm×n,使得AXA=BX, ATYA=BTy.问题Ⅰ(b)给定矩阵X∈Rm×p p,y∈Rn×p p,A=diag(λ1Ik1,λ2Ik2,…,λ1Ik1)∈Rp×p且k1 k2 … k1=p,λ1,…,λ1互异.求矩阵A,B∈Rm×n,使得AXA=BX, ATyA=BTy, YTAX=Ip,YTBX=A.问题Ⅱ给定A,B∈Rm×n,求[A,B]∈SAB,使得‖ [A,B]-[A,B]‖F=inf [A,B]∈s AB‖[A,B]-[A,B]‖ F,其中SAB是问题Ⅰ的解集合.借助于矩阵X,Y的奇异值分解给出了问题I的通解表达式,证明了问题Ⅱ的解存在唯一,并给出了问题Ⅱ的唯一解的显式表示.  相似文献   

11.
对于给出了约束矩阵方程WAWXW^~BW^~ = D, R( X) C R[ ( AW)^h1 ], N( X)∪N[ (W^~B)^k2]的Cramer法则.研究上述约束矩阵方程当方程右端项D有扰动时该方程解的敏感性,并得到了该方程在最坏情况下约束矩阵方程解的敏感性的严格上界.  相似文献   

12.
设Bm×n是所有m×n布尔矩阵的集合,R(A)为A∈Bn的行空间,|R(A)|表示行空间R(A)的基数,m,n是正整数,k为非负整数.证明了如下3个结果:(1) 设A∈Bm×n,m,(ⅰ) 如果A是幂等矩阵,即A2=A,那么|R(Am)|=|R(A)| ;(ⅱ) 如果A是对合矩阵,即A2=I,那么当m是奇数时,|R(Am)|=|R(A)|,当m是偶数时|R(A)|=2n.(2) 设A∈Bm×n,A含1的元素个数为k,0≤k≤min{m,n},且A的每行每列元素中1的元素个数最多为1,那么|R(A)|=2k.(3) 若A∈Bm×n是形如A=(O OO A1)的分块矩阵,A1=(aij)k×k,aij=0(i>j),aij=1(i≤j),i,j=1,2,…,k,则|R(A)|=k+1.  相似文献   

13.
文章首先考虑了如下问题:给定矩阵A,B∈Cn×m,求循环矩阵X∈CIRn×n,使得min||AX—B||。给X出了问题具有循环矩阵解的条件和解的一般表达式,若用SE表示上述问题解的集合,文章还考虑了最佳逼近问题:给定X*∈CIRn×n,求X∈SE,使得minX∈SE||X-X*||=||X-X*||,其中||·||表示矩阵的Frobenius范XESE数,证明了问题存在唯一解,给出了其唯一解的一般表达式。  相似文献   

14.
讨论了Kronecker积A(×)B的加W权Drazin逆(A(×)B)d,w的表示式,并建立投影算子的Kronecker积之间的关系.最后,运用上面的结果和Cramer法则,得到了一类约束线性方程的加权Drazin逆解x∈R(((A(×)B)(W1(×)W2))k1).  相似文献   

15.
对于给定的A∈Ct×m,B∈Ct×n,C∈Cp×m,D∈Cn×q,E∈Cp×q,通过奇异值分解和广义奇异值分解,我们得到了AX=B,XCD=E有广义自反解的充要条件,给出了一般解的表达式,在此基础上我们给出了最佳逼近解的表达式。  相似文献   

16.
设A∈Cn×n,B=A+E为其扰动矩阵,A、B的特征值分别为λ(A)={λk},λ(B)={μk}.关于特征值的传统误差界是估计|μ1-λ1|.利用矩阵的奇异值分解得到了可对称化矩阵特征值的wielandt型绝对扰动上界,改进了以往的结果.  相似文献   

17.
四元数矩阵方程的最小二乘解   总被引:2,自引:0,他引:2  
利用四元数矩阵的广义奇异值分解,给出了下列四元数矩阵方程问题‖AXB-M‖2F ‖CXD-N‖2F=min解的一般表达式.  相似文献   

18.
证明了下列定理:设A、B分别为困G1=(V1,E1)与G2=(V2,E2)的邻各矩阵,且V1=V2=n,则留G1和G2同语的充分必要条件是tr(Ak)=tr(Bk),k=l,2,…,n。  相似文献   

19.
令M-1记所有n×n逆M矩阵的集合,Sk(k>1)记所有实矩阵其每个k×k主子矩阵都是逆M矩阵的集合.首先证得如果A,B∈M-1分别是上、下Hessenberg矩阵,则对任意H1,H2∈S2,AB和(AH1)(BH2)都是三对角线矩阵(因而是完全非负矩阵);其次证得如果A=(aij),B=(bij)(M-1满足aji=bij=0,i-j≥3,则对任意H1,H2∈S3,AB和(AH1)(BH2)都是五对角线逆M矩阵.  相似文献   

20.
讨论了整环上Drazin逆的存在性,并且给出了一些充分必要条件,进一步讨论整环上Drazin逆的存在性,并且给出了另一个充分必要条件,即对某个正整数k,R(A~k)( )N(B~k)=R~n。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号