首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在正则半群中,借助于一种关系R,利用幂等方法刻划其最小群同余。  相似文献   

2.
本文给出了幂等元交换的g-正则半群上的最小群同余,推广了文[1]的结果。  相似文献   

3.
毕竟正则半群上的同余   总被引:1,自引:3,他引:1  
讨论了毕竟正则半群S的同余格上包含一些特殊同余的同余类K—类(T—类).ρ^K是群同余(C1ifford同余,半格同余)的K—类ρK,是由S上的矩形群的幂零扩张同余(矩形群的幂零扩张的半格同余,矩形带的幂零扩张的半格同余)组成.ρ^T是半格同余(带同余)的T—类ρT,是由S上的群的幂零扩张的半格同余(*—cryptic的群的幂零扩张的并同余)组成.。  相似文献   

4.
什么样的子集可以作为一个 序半群的正则同余的同余类仍是一个公开问题。Kehayopulu和Tsingelis给出了什么样的子集可以作为序半群的某修正在则半各同余的同余类。继他们之后,本证明了序半群S的半群结构上的理想C是S是正则同余类的充分必要条件为C是凸集。  相似文献   

5.
本文给出了弱左C半群的一个等价条件,研究了正则半群的弱左C同余,用同余的枋和超迹描述了弱左C同余。  相似文献   

6.
刻画出了半群~$\\overline{P}(T,G,R)$~上的幂等纯同余、最大幂等分离同余和最小群同余,其中~$P(Y,G,X)$~为满足条件~$F$~和幂等元集闭包是~Clifford~半群的逆半群.  相似文献   

7.
借助于一种关系R,利用幂等元方法给出了π-正则半群的一个最小群同余。  相似文献   

8.
9.
关于正则半群的同余的刻划的最好结果推广到Г-正则半群上,实现了Г-正则半群的同余刻划。  相似文献   

10.
给出了文献(四川师范大学学报(自然科学版),2001,24(3):219-223.)中关于弱逆半群上最大幂等元分离同余和群同余主要结论的刻画及证明的一些更正和简化。  相似文献   

11.
考虑一般的正则半群上的模糊同余,定义了正则半群的模糊同余三元组的概念,证明了正则半群上的模糊同余由它的模糊同余三元组惟一确定,进而得到正则半群上的模糊同余集和模糊同余三元组集之间存在一一对应关系。  相似文献   

12.
双循环半群在逆半群的研究中起着重要的作用,对此类半群上的同余关系进行了探讨,从而得到一些重要的结论.  相似文献   

13.
本文研究了亚幂零半群的基本性质及幂等元分离同余,并给出了同余交换的有限阶亚幂零半群的完全分类。  相似文献   

14.
通过引进半群的内酉子半群和正则半群的完全内酉子半群的概念,讨论了正则半群上的群同余与其完全内酉子半群之间的对应关系。  相似文献   

15.
本文证明了当幂等元集是自共轭的拟正则半群时它有最小群同余,同时还证明了这样两个半群的张量积的最大群同态象同构于它们的最大群同态象的张量积。  相似文献   

16.
本文讨论了正则半群上的左Clifford同余和左E-酉同余。证明了使得ρ^Tl是半格同余的Tl-类ρTl恰由左Clifford同余构成;使得ρ^K是左群同余的K-类ρK恰由左E-酉同余构成。同时,还用滤子上的左群同余刻划了左Clifford同作。  相似文献   

17.
通过引进半群的内酉子半群和正则半群的完全内酉子半群的概念,讨论了正则半群上的群同余与其完全内酉子半群之间的对应关系.  相似文献   

18.
主要解决了Ochmkc教授提出的一个问题,得到以下结果:定理 设S是半群,则下述三款等价1)S是L_1自由半群;2)S是L_r自由半群;3)|S|<2或|S|>2且S是素数阶循环群.命题 设S是半群,则S有非平凡左(右)同余当且仅当S含真子半群.  相似文献   

19.
设S是幂等元满足置换恒等式的富足半群,则S是左正规带L,右正规带R和适当半群T的拟织积,记作S=QS(Y,L,T,R)。给定L上的同余λ,R上的同余τ,T上的好同余η,它们满足一定的相容性条件,称(λ,η,τ)是S的好同余组。对S的每一个好同余组(λ,η,τ),定义S上的关系ρ(λ,η,τ):(e,a,f),(u,b,v)∈S,(e,a,f)ρ(λ,η,τ),(u,b,v)=eλu,aηb,fτv  相似文献   

20.
在π -正则半群S中 ,给出了关系R={(aeam- 1 a1 f,(aeam- 1 a1 f) 2 ) ∈S×S|a∈S ,am ∈RegS ,a1 ∈V(am) ,e ,f∈E(S) }和由R生成的最小同余ρ#,给出了S的最小群同余的刻划 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号