首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This brief review evaluates the expression of cell-specific markers on differentiated neural cells and, where necessary, on their developing precursors. Within these limitations only the commonly used markers are discussed and those deemed unequivocal are only briefly appraised.  相似文献   

2.
C M Regan 《Experientia》1988,44(8):695-697
This brief review evaluates the expression of cell-specific markers on differentiated neural cells and, where necessary, on their developing precursors. Within these limitations only the commonly used markers are discussed and those deemed unequivocal are only briefly appraised.  相似文献   

3.
Brain function relies on communication among neurons via highly specialized contacts, the synapses, and synaptic dysfunction lies at the heart of age-, disease-, and injury-induced defects of the nervous system. For these reasons, the formation—and repair—of synaptic connections is a major focus of neuroscience research. In this review, I summarize recent evidence that synapse development is not a cell-autonomous process and that its distinct phases depend on assistance from the so-called glial cells. The results supporting this view concern synapses in the central nervous system as well as neuromuscular junctions and originate from experimental models ranging from cell cultures to living flies, worms, and mice. Peeking at the future, I will highlight recent technical advances that are likely to revolutionize our views on synapse–glia interactions in the developing, adult and diseased brain.  相似文献   

4.
Central nervous system stem cells in the embryo and adult   总被引:19,自引:0,他引:19  
The central nervous system is generated from neural stem cells during embryonic development. These cells are multipotent and generate neurons, astrocytes and oligodendrocytes. The last few years it has been found that there are populations of stem cells also in the adult mammalian brain and spinal cord. In this paper, we review the recent development in the field of embryonic and adult neural stem cells. Received 26 March 1998; received after revision 27 April 1998; accepted 27 April 1998  相似文献   

5.
Résumé L'argyrophilie est la propriété d'une partie constituante protéique de l'axoplasme qui peut être dissoute et reprécipitée. Il est donc probable que c'est une substance, ou un groupe de substances, plutôt qu'une organelle formée, qui est responsable de la coloration de l'axone au contact de l'argent. Les qualités de cette protéine diffèrent d'une façon marquée de celles déjà connues des protéines intracellulaires membraneuses et fibreuses.  相似文献   

6.
Originating from ectodermal epithelium, radial glial cells (RGCs) retain apico-basolateral polarity and comprise a pseudostratified epithelial layer in the developing cerebral cortex. The apical endfeet of the RGCs faces the fluid-filled ventricles, while the basal processes extend across the entire cortical span towards the pial surface. RGC functions are largely dependent on this polarized structure and the molecular components that define it. In this review, we will dissect existing molecular evidence on RGC polarity establishment and during cerebral cortex development and provide our perspective on the remaining key questions.  相似文献   

7.
8.
Summary Neurons and glioblasts that arise in the ventricular zone migrate to form discrete nuclei and laminae as the central nervous system develops. By stably labeling precursor cells in the ventricular zone, pathways taken by different cells within an individual clone can be described. We have used recombinant retroviruses to label precursor cells with a heritable marker, theE. coli lacZ gene; clones of lacZ-positive cells are later mapped histochemically. Here we review results from three regions of the chicken central nervous system — the optic tectum, spinal cord, and forebrain - and compare them with previous results from mammalian cortex and other regions of the vertebrate CNS. In particular, we consider the relationship between migratory patterns and functional organization, the existence of multiple cellular sources of migratory guidance, and the issue of whether a cell's choice of migratory pathway influences its ultimate phenotype.  相似文献   

9.
G E Gray  S M Leber  J R Sanes 《Experientia》1990,46(9):929-940
Neurons and glioblasts that arise in the ventricular zone migrate to form discrete nuclei and laminae as the central nervous system develops. By stably labeling precursor cells in the ventricular zone, pathways taken by different cells within an individual clone can be described. We have used recombinant retroviruses to label precursor cells with a heritable marker, the E. coli lacZ gene; clones of lacZ-positive cells are later mapped histochemically. Here we review results from three regions of the chicken central nervous system--the optic tectum, spinal cord, and forebrain--and compare them with previous results from mammalian cortex and other regions of the vertebrate CNS. In particular, we consider the relationship between migratory patterns and functional organization, the existence of multiple cellular sources of migratory guidance, and the issue of whether a cell's choice of migratory pathway influences its ultimate phenotype.  相似文献   

10.
Neurotrophic factors are present in limiting quantities, and neurons that obtain an adequate supply of the required neurotrophic factor survive whereas those that compete unsuccessfully die. Analysis of null mutant mice for neurotrophins and Trk receptors as well as in vivo experiments in ovo in the chick applying exogenous neurotrophins or neutralising antisera have significantly increased knowledge of the roles they play during development. This review focuses on recent advances in understanding the various roles of neurotrophins in dorsal root ganglion sensory neuron development at different times in embryonic development - an early local role for differentiation of the sensory precursor cells and a later survival-promoting target-derived role for the mature neurons. Neurotrophic factors are present in limiting quantities, and neurons that obtain an adequate supply of the required neurotrophic factor survive whereas those that compete unsuccessfully die. Analysis of null mutant mice for neurotrophins and Trk receptors as well as in vivo experiments in ovo in the chick applying exogenous neurotrophins or neutralising antisera have significantly increased knowledge of the roles they play during development. This review focuses on recent advances in understanding the various roles of neurotrophins in dorsal root ganglion sensory neuron development at different times in embryonic development - an early local role for differentiation of the sensory precursor cells and a later survival-promoting target-derived role for the mature neurons.  相似文献   

11.
Résumé Les cellules actives isolées du système nerveux central démontrées par la méthode deHess-Pearse pour le TPN-H diaphorase, sont des neurones. Ceux-ci sont identifiés par une méthode de coloration argentine que l'on peut pratiquer directement sur les coupes enzymatiques. La recette de cette méthode est donnée.  相似文献   

12.
13.
14.
Both the development and the maintenance of neurons require a great deal of active cytoplasmic transport. Much of this transport is driven by microtubule motor proteins. Membranous organelles and other macromolecular assemblies bind motor proteins that then use cycles of adenosine 5'-triphosphate hydrolysis to move these 'cargoes' along microtubules. Different sets of cargoes are transported to distinct locations in the cell. The resulting differential distribution of materials almost certainly plays an important part in generating polarized neuronal morphologies and in maintaining their vectorial signalling activities. A number of different microtubule motor proteins function in neurons; presumably they are specialized for accomplishing different transport tasks. Questions about specific motor functions and the functional relationships between different motors present a great challenge. The answers will provide a much deeper understanding of fundamental transport mechanisms, as well as how these mechanisms are used to generate and sustain cellular asymmetries.  相似文献   

15.
16.
17.
Riassunto In questo lavoro si descrive una nuova metodica per la determinazione della massa secca dei nuclei delle cellule nervose o gliali mediante il microscopio ad interferenza. Sono riferiti i valori della massa secca, dei volumi e della concentrazione dei nuclei isolati sia da tessuto liofilizzato che da tessuto fresco.

This investigation was supported by a grant to this Department from the Consiglio Nazionale delle Ricerche (No. 04/76/4/3482).  相似文献   

18.
19.
Collagens are extracellular proteins characterized by a structure in triple helices. There are 28 collagen types which differ in size, structure and function. Their architectural and functional roles in connective tissues have been widely assessed. In the nervous system, collagens are rare in the vicinity of the neuronal soma, occupying mostly a “marginal” position, such as the meninges, the basement membranes and the sensory end organs. In neural development, however, where various ECM molecules are known to be determinant, recent studies indicate that collagens are no exception, participating in axonal guidance, synaptogenesis and Schwann cell differentiation. Insights on collagens function in the brain have also been derived from neural pathophysiological conditions. This review summarizes the significant advances which underscore the function and importance of collagens in the nervous system. Received 09 September 2008; received after revision 24 October 2008; accepted 28 October 2008  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号