共查询到20条相似文献,搜索用时 78 毫秒
1.
通过类比凝聚模、(m,n)-凝聚环和半遗传环的概念与性质,给出了(m,n)-凝聚模和(m,n)-半遗传模的概念,并研究了在一般环的条件下(m,n)-凝聚模和(m,n)-半遗传模的性质.还通过(m,n)-M-平坦模和(m,n)-M-内射模给出了(m,n)-凝聚模和(m,n)-半遗传模的一些等价刻画. 相似文献
2.
设R是环,m,n是非负整数,称右R-模C是(m,n)-余挠模,是指对任何平坦维数不超过n的右R-模N,都有Extm+1R(N,C)=0.称右R-模M为(m,n)-平坦模,是指对任何(m,n)-余挠模C,都有Ext1R(M,C)=0.证明了(F nm,C mn)是完备的遗传余挠对,其中F nm,C mn分别表示(m,n)... 相似文献
3.
作为(m,n)-内射左R-模的推广,引入了Gorenstein(m,n)-内射左R-模的概念.在强左(m,n)-凝聚环上研究了这类模的一些性质;在强左(m,n)-凝聚环上利用Gorenstein(m,n)-内射左R-模给出了左(m,n)-内射环的一些等价刻画. 相似文献
5.
本文给出了(n,0)-内射模的推广Gorenstein(n,0)-内射模的定义并得出了Gorenstein(n,0)-内射模的一些同调性质,并讨论了R是右n-凝聚Noether环,且R是余生成子时,Gorenstein(n,0)-内射模的等价条件及性质。给出了Gorenstein(n,0)-内射维数的概念并讨论了某些短正合列下Gorenstein(n,0)-内射维数的关系。最后介绍了每个模都是Gorenstein(n,0)-内射的环的等价条件,以及自(n,0)-内射环能被Gorenstein(n,0)-内射、平坦和投射模刻划。 相似文献
6.
设R是任给的环,m和n都是正整数。右R模NR是(m,n)-内射模,若对Rm的任给的n-生成子模K,则有Ext1R(Rm/K,N)=0。右R模MR是(m,n)-投射模,若对任给的(m,n)-内射模N,有Ext1R(M,N)=0。当m=1,n是任给的正整数时,(m,n)-投射模就是f-投射模。任给的(m,n)-表现模都是(m,n)-投射模。设F-(m,n)-proj表示由所有的(m,n)-投射模所组成的模集,F-(m,n)-inj表示由所有的(m,n)-内射模所组成的模集。本文给出了(m,n)-投射模的刻画,同时证明了(F-(m,n)-proj,F-(m,n)-inj)是一余挠理论,且每一个R-模都有一个特殊的(m,n)-内射预包络和一个特殊的(m,n)-投射预覆盖。还给出了(m,n)-投射模和(m,n)-内射模的相关的性质。 相似文献
7.
研究Gorenstein平坦模的推广形式(即(n,m)-强Gorenstein平坦模)以及平坦模的轭,讨论若模M的第n个轭是(n,m)-SG平坦模,则模M是否为(n,m+d)-SG平坦模的问题. 相似文献
8.
朱辉辉 《兰州大学学报(自然科学版)》2011,47(2):98-100,108
研究了Gorenstein内射模,介绍了一类Gorenstein内射维数有限的模,即研究的(n,m)-强Gorenstein内射模,并讨论了这类模的上合冲及性质. 相似文献
9.
10.
设A,B是环,U是(B,A)-双模,n,d为非负整数,■是形式三角矩阵环,首先,证明了■是n-表现左T-模当且仅当M1是n-表现左A-模,Coker φM是n-表现左B-模且φM:U?AM1→M2是单同态。其次,证明了当■是(n,d)-内射左T-模时,M1是(n,d)-内射左A-模,M2是(n,d)-内射左B-模。 相似文献
11.
龚志伟 《延安大学学报(自然科学版)》2012,31(4):4-6
利用n-表现维数引进了(m,n)-内射模,(m,n)-平坦模及右(m,n)-凝聚环的概念,并给出了右(m,n)-凝聚环的若干刻画。 相似文献
12.
对于两个正整数m和n,一个右R模M称为(m,n)内射模,如果从n个生成元的R^m模的子模到M的每个R同态映射都可以延拓为从R^m到M的同态映射,刻画了交换环上(m,n)内射模的性质。 相似文献
13.
对于一个正常的全染色,相邻点满足顶点及其关联边染色的色集不同的条件时,称为邻点可区别全染色,其所用的最小染色数称为邻点可区别全色数,就M2n(r)和L2n(r)两类图,得到n,r任意取值下的邻点可区别全色数. 相似文献
14.
证明了在Morita对偶之下,自反模是(n,d)-内射的((n,d)-投射的)当且仅当它的Morita偶是(n,d)-投射的((n,d)-内射的),以及右(n,d)-环与左余(n,d)-环,(弱)n-遗传模与(弱)n-余遗传模都是互为对偶的.特别地,自反模是内射的(余遗传的)当且仅当它的偶是(0,0)-投射的(0-遗传的). 相似文献
15.
16.
给出了正则(n,m)-半群,逆(n,m)-半群,纯正(n,m)-半群的定义,并讨论了其基本性质,建立了(n,n-1)-半群上的Green定理,分别给出了(n,n-1)-半群是逆(n,n-1)-半群,纯正(n,n-1)-半群的充分必要条件. 相似文献
17.
在N(2 ,2 ,0 )代数 (S , ,△ ,0 )中 , x ,y∈S ,总有x y =y△x ,本文讨论 =△的特殊情况 ,此时称 (s , ,0 )为N(2 ,0 )代数 ,研究它的基本性质和它的一个真子类———强N(2 ,0 )代数 相似文献
18.
19.
陈辉 《杭州师范学院学报(自然科学版)》2002,(6)
讨论了有向图的几何性质和其路代数的代数性质之间的关系 ,解决了路代数中若干遗留问题 ,给出本原路代数、(右 ) Goldie路代数的有向图特征 ,证明了广义路代数的 Brown-Mc Coy根与它的 Jacobson根是不重合的 . 相似文献
20.