首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
本文基于太阳风-磁层-电离层耦合的全球磁流体力学(MHD)数值模拟,研究几种典型的太阳风动压和行星际磁场条件下,地球子午面上方磁层顶的位置和形状特征,以及磁层顶位形参数日下点距离和磁层顶张角随行星际条件的变化规律。模拟结果表明:正午午夜子午面磁层顶位形具有内凹结构,当行星际磁场为南向时,随磁场强度增强,日下点距离减小;行星际磁场为北向时,随磁场强度增强,日下点距离增大。动压增大,日下点距离减小。南向磁场强度增强,磁层顶张角变大。这些模拟结果与基于卫星数据的高纬经验模型(B00)以及(Schield)模型的经验结论相吻合,说明MHD模拟是研究磁层顶位形的有效工具。特别是在高纬穿越数据的获得受限时,基于对磁层顶位形的物理理论研究构建的数值模拟数据是解决这一问题的有效途径。  相似文献   

2.
Establishing the mechanisms by which the solar wind enters Earth's magnetosphere is one of the biggest goals of magnetospheric physics, as it forms the basis of space weather phenomena such as magnetic storms and aurorae. It is generally believed that magnetic reconnection is the dominant process, especially during southward solar-wind magnetic field conditions when the solar-wind and geomagnetic fields are antiparallel at the low-latitude magnetopause. But the plasma content in the outer magnetosphere increases during northward solar-wind magnetic field conditions, contrary to expectation if reconnection is dominant. Here we show that during northward solar-wind magnetic field conditions-in the absence of active reconnection at low latitudes-there is a solar-wind transport mechanism associated with the nonlinear phase of the Kelvin-Helmholtz instability. This can supply plasma sources for various space weather phenomena.  相似文献   

3.
In this study, the advantages and the limitations of previous low-latitude magnetopause empirical models are discussed. In order to overcome their limitations and inherit their advantages, a new continuous function for the influence of the interplanetary magnetic field (IMF) Bz on the magnetopause, the Shue model function and the 613 low-latitude magnetopause crossings are used to construct a new low-latitude magnetopause model parameterized by the solar wind dynamic pressure (Dp) and IMF Bz. In comparison ...  相似文献   

4.
It is believed that a southward interplanetary magnetic field (IMF) is mainly responsible for the energy input from solar wind into the magnetosphere. This paper presents an unusual case of strong anti-sunward plasma flow (up to 2 km/s) in the polar cap ionosphere and large cross-polar cap potential (CPCP) during a period of horizontal IMF (|B Z | < 2 nT) observed by both ACE (at the L1 point) and Geotail (on the dusk flank of the magnetosheath). The CPCP is even higher than that under preceding B Z ≈ −23 nT. Furthermore, GOES8 observed that the magnetosheath field turns northward as the anti-sunward plasma flow and CPCP start to increase, which implies that the magnetosheath field interacting with the Earth’s magnetopause has significantly rotated and differs from the IMF observed by ACE and Geotail. In accordance with previous theoretical work, we suggest that the magnetic field line draping produces a southward magnetosheath field and enhances anti-sunward plasma flow and the CPCP.  相似文献   

5.
Limited single-spacecraft observations of Jupiter's magnetopause have been used to infer that the boundary moves inward or outward in response to variations in the dynamic pressure of the solar wind. At Earth, multiple-spacecraft observations have been implemented to understand the physics of how this motion occurs, because they can provide a snapshot of a transient event in progress. Here we present a set of nearly simultaneous two-point measurements of the jovian magnetopause at a time when the jovian magnetopause was in a state of transition from a relatively larger to a relatively smaller size in response to an increase in solar-wind pressure. The response of Jupiter's magnetopause is very similar to that of the Earth, confirming that the understanding built on studies of the Earth's magnetosphere is valid. The data also reveal evidence for a well-developed boundary layer just inside the magnetopause.  相似文献   

6.
Two interplanetary shocks are examined to determine the responses of the magnetic field and plasma in the plasma sheet upon the shock impacts by using TC-1 observational data.The two shocks are observed by WIND on November 7,2004.Prior to and after the shock,the IMF is either weakly southward or northward.The responses of the plasma sheet to the two shocks are intense and much similar.When the shock interacts with the magnetosphere,the magnetic field impulsively increases 1-2 min after the geomagnetic field...  相似文献   

7.
Magnetic reconnection is a process that converts magnetic energy into bi-directional plasma jets; it is believed to be the dominant process by which solar-wind energy enters the Earth's magnetosphere. This energy is subsequently dissipated by magnetic storms and aurorae. Previous single-spacecraft observations revealed only single jets at the magnetopause--while the existence of a counter-streaming jet was implicitly assumed, no experimental confirmation was available. Here we report in situ two-spacecraft observations of bi-directional jets at the magnetopause, finding evidence for a stable and extended reconnection line; the latter implies substantial entry of the solar wind into the magnetosphere. We conclude that reconnection is determined by large-scale interactions between the solar wind and the magnetosphere, rather than by local conditions at the magnetopause.  相似文献   

8.
The interaction of the solar wind with Earth's magnetosphere gives rise to the bright polar aurorae and to geomagnetic storms, but the relation between the solar wind and the dynamics of the outer planets' magnetospheres is poorly understood. Jupiter's magnetospheric dynamics and aurorae are dominated by processes internal to the jovian system, whereas Saturn's magnetosphere has generally been considered to have both internal and solar-wind-driven processes. This hypothesis, however, is tentative because of limited simultaneous solar wind and magnetospheric measurements. Here we report solar wind measurements, immediately upstream of Saturn, over a one-month period. When combined with simultaneous ultraviolet imaging we find that, unlike Jupiter, Saturn's aurorae respond strongly to solar wind conditions. But in contrast to Earth, the main controlling factor appears to be solar wind dynamic pressure and electric field, with the orientation of the interplanetary magnetic field playing a much more limited role. Saturn's magnetosphere is, therefore, strongly driven by the solar wind, but the solar wind conditions that drive it differ from those that drive the Earth's magnetosphere.  相似文献   

9.
Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pressure and the IMF Bz component. Strong hard particle precipitation occurred in the initial phase for both storma,associated with high solar wind dynamical pressure. During the recovery phase of the storms, some strong particle precipitation was neither concerned with high solar wind pressure nor southward IMF Bz. Severe negative storm effects depicted by electron density depletion appeared in theF-region during the main and recovery phase of both storms, caused by intensive electric field-related strong Joule/frictional heating when IMF was largely southward. The ion temperature behaved similarly in E- and F-region, but the electron temperature did quite different, with a strong increase in the lower E-region relating to plasma instability excited by strong electric field and a slight decrease in the F-region probably concerning with a cooling process. The field-aligned ion velocity was high and apparently anticorrelated with the northward component of the ion convection velocity.  相似文献   

10.
Auroral substorm response to solar wind pressure shock   总被引:1,自引:0,他引:1  
Two cases of auroral substorms have been studied with the Polar UVI data, which were associated with solar wind pressure shock arriving at the Earth. The global aurora activities started about 1–2 min after pressure shocks arrived at dayside magnetopause, then nightside auroras intensified rapidly 3–4 min later, with auroral substorm onset. The observations in synchronous orbit indicated that the compressing effects on magnetosphere were observed in their corresponding sites about 2 min after the pressure shocks impulse magnetopause. We propose that the auroral intensification and substorm onset possibly result from hydromagnetic wave produced by the pressure shock. The fast-mode wave propagates across the magnetotail lobes with higher local Alfven velocity, magnetotail was compressed rapidly and strong lobe field and cross-tail current were built in about 1–2 min, and furthermore the substorm was triggered due to an instability in current sheet.  相似文献   

11.
Frey HU  Phan TD  Fuselier SA  Mende SB 《Nature》2003,426(6966):533-537
The most important process that allows solar-wind plasma to cross the magnetopause and enter Earth's magnetosphere is the merging between solar-wind and terrestrial magnetic fields of opposite sense-magnetic reconnection. It is at present not known whether reconnection can happen in a continuous fashion or whether it is always intermittent. Solar flares and magnetospheric substorms--two phenomena believed to be initiated by reconnection--are highly burst-like occurrences, raising the possibility that the reconnection process is intrinsically intermittent, storing and releasing magnetic energy in an explosive and uncontrolled manner. Here we show that reconnection at Earth's high-latitude magnetopause is driven directly by the solar wind, and can be continuous and even quasi-steady over an extended period of time. The dayside proton auroral spot in the ionosphere--the remote signature of high-latitude magnetopause reconnection--is present continuously for many hours. We infer that reconnection is not intrinsically intermittent; its steadiness depends on the way that the process is driven.  相似文献   

12.
The dawn-dusk asymmetry of the magnetosheath under quasi-steady states has been studied by using a newly developed 3D MHD magnetosphere simulation model. The results show that the dawn-dusk asymmetry is substantial because of the Parker spiral IMF. It is found that the dawn-dusk magnetosheath thickness asymmetry is the effect of different shock conditions. The plasma density and flux asymmetry are mainly caused by the different thickness of the dawn-dusk magnetosheath, and the magnetic reconnection on the magnetopause has no significant effects. It is also showed that the Plasma Depletion Layer in front of the dayside magnetopause can cause duskward plasma flow, and the total plasma flux on the dusk side will be higher.  相似文献   

13.
In situ detection of collisionless reconnection in the Earth's magnetotail   总被引:14,自引:0,他引:14  
Oieroset M  Phan TD  Fujimoto M  Lin RP  Lepping RP 《Nature》2001,412(6845):414-417
Magnetic reconnection is the process by which magnetic field lines of opposite polarity reconfigure to a lower-energy state, with the release of magnetic energy to the surroundings. Reconnection at the Earth's dayside magnetopause and in the magnetotail allows the solar wind into the magnetosphere. It begins in a small 'diffusion region', where a kink in the newly reconnected lines produces jets of plasma away from the region. Although plasma jets from reconnection have previously been reported, the physical processes that underlie jet formation have remained poorly understood because of the scarcity of in situ observations of the minuscule diffusion region. Theoretically, both resistive and collisionless processes can initiate reconnection, but which process dominates in the magnetosphere is still debated. Here we report the serendipitous encounter of the Wind spacecraft with an active reconnection diffusion region, in which are detected key processes predicted by models of collisionless reconnection. The data therefore demonstrate that collisionless reconnection occurs in the magnetotail.  相似文献   

14.
场向电流与地磁和亚暴活动的相关性   总被引:2,自引:0,他引:2  
检验了场向电流与地磁和亚暴活动的相关性。按极光电集流指数AL的大小,地磁活动被分为4个水平,即|AL|<=50,50<|AL|<=150,150<|AL|<=300和|AL|>300分别相应于非常平静、平静、扰动和强烈扰动。统计结果表明,场向电流的发生率、强度和密度都随地磁活动的增加而增大。在最低活动水平,发生率只有8.9%,而73.2%的事件发生在扰动水平以上。对于夜间的场向电流,65.5%的事件伴随着磁层亚暴。  相似文献   

15.
Storm-time changes of main plasma parameters in the auroral ionosphere are analyzed for two intense storms occurring on May 15, 1997 and Sept. 25, 1998, with emphasis on their relationship to the solar wind dynamic pressure and the IMFB z component. Strong hard particle precipitation occurred in the initial phase for both storms, associated with high solar wind dynamical pressure. During the recovery phase of the storms, some strong particle precipitation was neither concerned with high solar wind pressure nor southward IMFB z. Severe negative storm effects depicted by electron density depletion appeared in theF-region during the main and recovery phase of both storms, caused by intensive electric field-related strong Joule/frictional heating when IMF was largely southward. The ion temperature behaved similarly inE-andF-region, but the electron temperature did quite different, with a strong increase in the lowerE-region relating to plasma instability excited by strong electric field and a slight decrease in theF-region probably concerning with a cooling process. The field-aligned ion velocity was high and apparently anticorrelated with the northward component of the ion convection velocity. Foundation item: Supported by the National Natural Science Foundation of China (49674241) and the Research Fund for the Doctoral Program of Higher Education Biography: LIU Hui-xin (1974-), female, Ph.D. candidate. Research direction: polar ionospheric behaviors during magnetic storms.  相似文献   

16.
On July 22, 2004, the WIND spacecraft detected a typical interplanetary shock. There was sustaining weak southward magnetic field in the preshock region and the southward field was suddenly enhanced across the shock front (i.e., southward turning). When the shock impinged on the magnetosphere, the magnetospheric plasma convection was abruptly enhanced in the central plasma sheet, which was directly observed by both the TC-1 and Cluster spacecraft located in different regions. Simultaneously, the Cluster spacecraft observed that the dawn-to-dusk electric field was abruptly enhanced. The variations of the magnetic field observed by TC-1, Cluster, GOES-10 and GOES-12 that were distributed in different regions in the plasma sheet and at the geosynchronous orbit are obviously distinct. TC-1 observations showed that the magnetic intensity kept almost unchanged and the elevation angle decreased, but the Cluster spacecraft, which was also in the plasma sheet and was further from the equator, observed that the magnetic field was obviously enhanced. Simultaneously, GOES-12 located near the midnight observed that the magnetic intensity sharply increased and the elevation angle decreased, but GOES-10 located in the dawn side observed that the magnetic field was merely compressed with its three components all sharply increasing. Furthermore, the energetic proton and electron fluxes at nearly all channels observed by five LANL satellites located at different magnetic local times (MLTs) all showed impulsive enhancements due to the compression of the shock. The responses of the energetic particles were much evident on the dayside than those on the nightside. Especially the responses near the midnight were rather weak. In this paper, the possible reasonable physical explanation to above observations is also discussed. All the shock-induced responses are the joint effects of the solar wind dynamic pressure pulse and the magnetic field southward turning.  相似文献   

17.
2010年,作者在地球外太空发现一个以磁口(cusp)为中心的巨大的动力辐射区域.这个新辐射区域纵深可达10.5Re;在7-8Re高度上,其尺度在纬线和经线方向上可分别达到6Re和>10Re;当人造卫星穿越该区域时,测得的电磁涨落强度与高能带电粒子强度都有数量级的增加.本文对此进行了综述分析,认为这是太空时代最关键和最...  相似文献   

18.
It has often been stated that Saturn's magnetosphere and aurorae are intermediate between those of Earth, where the dominant processes are solar wind driven, and those of Jupiter, where processes are driven by a large source of internal plasma. But this view is based on information about Saturn that is far inferior to what is now available. Here we report ultraviolet images of Saturn, which, when combined with simultaneous Cassini measurements of the solar wind and Saturn kilometric radio emission, demonstrate that its aurorae differ morphologically from those of both Earth and Jupiter. Saturn's auroral emissions vary slowly; some features appear in partial corotation whereas others are fixed to the solar wind direction; the auroral oval shifts quickly in latitude; and the aurora is often not centred on the magnetic pole nor closed on itself. In response to a large increase in solar wind dynamic pressure Saturn's aurora brightened dramatically, the brightest auroral emissions moved to higher latitudes, and the dawn side polar regions were filled with intense emissions. The brightening is reminiscent of terrestrial aurorae, but the other two variations are not. Rather than being intermediate between the Earth and Jupiter, Saturn's auroral emissions behave fundamentally differently from those at the other planets.  相似文献   

19.
A substorm event has been simulated for the first time by using SWMF (Space Weather Modeling Framework) developed by the University of Michigan. The model results have been validated using Geotail and Cluster satellite observations. The substorm onset occurs at 22:08 UT on September 28, 2004, as identified from FUV WIC observations on the NASA IMAGE spacecraft. SWMF can couple effectively the magnetosphere, inner magnetosphere and ionosphere processes and is driven by the solar wind and IMF (Interplanetary Magnetic Field) parameters, which are measured by ACE satellite and time delayed to the upstream boundary of the model. It shows that (1) SWMF can predict well the large-scale variations of the magnetospheric magnetic field and ionospheric currents during the substorm event; and (2) the accuracy of the time delay of the solar wind from ACE to the outer boundary of the model has great effects on the model results. Finally, the substorm trigger mechanism has been discussed and the way of improvement of the model has been pointed out.  相似文献   

20.
The signatures of flux ropes with obvious core magnetic field are detected by Cluster Ⅱ at the dayside magnetopause during 11:00--11:15 UT on Mar. 2, 2001. The similar characteristics can be found from the magnetic fiel dvariations recorded by the four spacecrafts (Cluster Ⅱ C1--C4). All the three (-/ ) bipolar signatures in the BN component are accompanied with enhancements of BM and magnetic field strength B in the boundary normal coordinates (LMN coordinates). A MHD simulation with two dimensions and three components is performed to explore the reconnection process driven by the incoming flow of solar wind at the dayside magnetopause. The numerical results can illustrate the recurrent formation of magnetic structures with a core magnetic field. The time history of the magnetic field B and three components Bx, By and Bz at a given point of the current sheet can reproduce the observational features of the events mentioned above.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号