共查询到20条相似文献,搜索用时 15 毫秒
1.
基于SVM的分类算法与聚类分析 总被引:5,自引:0,他引:5
运用结构风险最小化原理和聚类原理,将支持向量机中有监督的分类算法与统计中无监督的聚类算法有机地结合起来。对线性可分与线性不可分两种情况分别建立了无监督的分类模型,模型的求解转化为一个二次规划问题。同时此模型也适合于多分类情况,在应用到心脏病的医疗诊断中,准确率为88.5%,较以前的方法有了明显的提高。 相似文献
2.
基于SVM的空间数据库的层次聚类分析 总被引:7,自引:0,他引:7
支持向量机用于两类问题的识别研究.本算法引入了SVM,构造二叉树对多类问题进行层次聚类分析.该算法采用SVM对两类问题进行识别,通过合并逐步由底向上构造二叉树,最终二叉树的数目即为聚类数.它适合任意形状的聚类问题,而且可以确定最优聚类的结果,并适于高维数据的分析. 相似文献
3.
一种基于支持向量机的直推式学习算法 总被引:6,自引:0,他引:6
直推式支持向量机(Transductive Support Vector Machine,TSVM)是标准的支持向量机算法在半监督学习问题上的一种扩展,但已有的TSVM算法存在训练速度慢、回溯式学习多、学习性能不稳定等缺点,针对这些问题提出一种改进的直推式支持向量机算法———ITSVM,该算法较准确地确定了待训练的未标识样本中的正负样本数问题,有效解决了传统TSVM中过多的回溯式学习问题,同时该算法也无需利用过多的未标识训练样本,从而减轻了计算强度.实验表明,ITSVM相比TSVM在分类正确率、分类速度以及使用的样本规模上,都表现出了一定的优越性. 相似文献
4.
基于支持向量机的增量学习算法 总被引:1,自引:0,他引:1
通过对支持向量机KKT条件和样本间关系的研究,分析了新增样本加入训练集后支持向量的变化情况,提出一种改进的Upper Limiton Increment增量学习算法.该算法按照KKT条件将对应的样本分为3类:位于分类器间隔外,记为RIG;位于分类间隔上,记为MAR;位于分类间隔内,记为ERR.并在每次训练后保存ERR集,将其与下一个增量样本合并进行下一次训练.实验证明了该算法的可行性和有效性. 相似文献
5.
张瑞环 《重庆工商大学学报(自然科学版)》2011,28(5):453-457
支持向量机是基于统计学习理论的一种学习方法,提出了基于压缩超球体的SVM分类问题的一种几何方法,具有直观、简单和易于实现的特点;通过实例验证,说明此方法的可行性和有效性,具有一定的推广价值。 相似文献
6.
《内蒙古师范大学学报(自然科学版)》2015,(5)
为了提高邮件分类的准确性和分类速度,提出一种基于加权子图和支持向量机相融合的邮件分类方法.首先通过收集邮件分类样本数据,利用加权子图提取邮件特征,并实现加权,然后采用核主成分分析选择邮件的最优特征子集,最后输入到支持向量机中进行学习,并采用布谷鸟算法搜索支持向量机参数,建立最优邮件分类器.仿真实验结果表明,该邮件分类方法不仅提高了邮件分类的正确率,而且分类速度明显加快,可以较好地满足网络邮件在线分类要求. 相似文献
7.
从降低时间和空间复杂度的角度出发,针对支持向量机的增量学习问题展开了研究,描述并比较了目前研究与应用较多的几种支持向量机增量学习算法,提出了一种基于壳向量的支持向量机渐进式增量学习算法,仿真实验结果表明:该算法在保证良好的分类精度的前提下,提高了学习效率. 相似文献
8.
一种支持向量聚类的快速算法 总被引:7,自引:0,他引:7
为了降低支持向量聚类(Support Vector Clustering,SVC)的运算复杂性,基于Yang等提出的邻近图法,用Merce[’核来表达Hilbert空间中的Euclidean距离,以此作为边的权重度量来生成最小生成树(Minimum Spanning Tree,MST),并只对MST的主干进行SVC连接运算.文中还定义了不相容性度量,并将其作为SVC连接运算中边的选择依据.试验证明,改进后算法的运行速度及聚类效果均优于邻近图法,特别是对大数据集的处理具有明显的优势,且具有一定的抗噪能力. 相似文献
9.
基于多特征融合的SVM声学场景分类算法研究 总被引:1,自引:0,他引:1
针对DCASE2017挑战赛的声场环境数据集,提取梅尔频率倒谱系数(MFCC)、短时能量(SE)、声学事件似然特征(AELF)、静音时间(MT)特征,组成多特征融合矩阵,通过对比多种核函数和寻优算法,最终选取高斯径向基核函数(RK)建立支持向量机(SVM)模型,采用交叉验证(CV)方法进行SVM参数寻优,对15种声学场景进行分类.实验结果表明,杂货店、办公室的分类准确性达到了90%以上,平均分类准确性达到71.11%,远高于挑战赛的基线系统61%的平均分类准确性. 相似文献
10.
11.
一种新的选择性支持向量机集成学习算法 总被引:6,自引:2,他引:6
针对支持向量机(SVM)在应用于集成学习中会失效的问题,提出一种选择性SVM集成学习算法(SE-SVM),利用ξα误差估计法估计个体SVM泛化性度量,并基于负相关学习理论引入差异性度量,通过递归删除法选择出一组泛化性能优良、相互间差异性大的SVM参与集成学习.基于UCI数据的仿真实验表明,SE-SVM能够平均提高SVM的分类正确率0.4%,比常规的Bag-ging集成学习方法和负相关集成学习方法的分类正确率分别提高了0.24%和0.16%. 相似文献
12.
支持向量机( SVM: Support Vector Machine) 是定义在特征空间上的间隔最大的线性分类器,参数的选择
决定了其学习性能和泛化能力。针对此参数选择问题,采用改进的涡流搜索算法对支持向量机参数进行选择,
寻找最优适应度函数。仿真实验表明,改进的涡流搜索算法是一种有效的SVM 参数选择方法,有利于跳出局
部最小值,其优化性能不低于涡流搜索算法。 相似文献
13.
针对面向分类去噪问题,提出了一种新的模糊支持向量机算法(ν-FSVM),并给出了通过无穷次连续可微函数建立模糊关系的方法.该方法能对训练集中的点自动赋予模糊关系,并且对带有噪声的点和孤立的点赋予较小的模糊关系.与传统的ν支持向量机比较,该算法通过建立训练集的模糊关系,能够大大减小噪声对分类的影响,从而提高分类精度,减少误差. 相似文献
14.
基于支持向量机的汉语问句分类 总被引:5,自引:0,他引:5
目前汉语问句分类一般都依据疑问词及其相关词的组合规则,但由于规则的提取很深地依赖于语言知识,而且很难穷举出所有的特征规则,因此会影响分类的效果.支持向量机(SVM)是建立在统计理论基础上的机器学习方法,对于小样本分类问题有很好的识别效果.文中分析和定义了汉语问句的类型,建立了以SVM为基础的问句分类模型,详细描述了问句分类特征的选取过程,并在句法特征的基础上引入语义特征进行汉语问句分类实验,分类准确率达88.7%,表明结合句法和语义特征以SVM进行汉语问句分类具有很好的效果. 相似文献
15.
任广永 《河南科技大学学报(自然科学版)》2008,29(4)
支持向量机学习算法的本质是从训练集中寻找支持向量,因此能否通过训练算法能快速找出支持向量是衡量支持向量机算法优劣的重要标准.本文提出了一种新的快速训练支持向量机的增量学习算法,首先,给出边界向量的定义,然后,对一个给定的新加人的样本,新的学习方法验证其是否为边界向量,如果是,将其加入到训练集中重新训练支持向量机,如果不是,就舍弃,这样能达到减少训练样本、降低训练复杂性目的,最后,给出了一个增量学习算法.实验表明测试误差和支持向量数量与SMO算法大致相当,而训练速度明显加快. 相似文献
16.
基于密度聚类的支持向量机分类算法 总被引:8,自引:0,他引:8
为了解决支持向量机的分类仅应用于较小样本集的问题,提出了一种密度聚类与支持向量机相结合的分类算法.在密度聚类中,当一个样本点不存在拟密度可达的样本点,则其显著特征即表现为该簇的边缘点,将该点加入约简集合,直至选出样本集合中的所有边缘对象,然后再利用约简集合寻找支持向量.实验表明,采用该算法,分类的准确率可从基于无监督聚类的支持向量机算法的86.81%提升至95.43%,核函数计算量由原数量级109下降到106以下,采取限制密度聚类中的核心点ε-邻域内的反例百分比的方法,可以增加约简样本的个数,可将分类准确率提高5%~8%左右. 相似文献
17.
给出了一种基于编码二叉树的支持向量机(SVM,Support Vector Machine)的多类分类算法.首先,定义了一种构造编码二叉树的方法,在此基础上合理的使用每个训练样本对应的编码来对多类样本进行划分,使之转化为两类分类问题.由算法的实现过程可以看出,本算法可以大大减少子分类器的构造个数,从而简化了多类SVM分类算法. 相似文献
18.
支持向量机增量学习算法研究 总被引:1,自引:0,他引:1
给出了使用多支持向量机进行增量学习的算法.传统的支持向量机不具有增量学习性能,而常用的增量学习方法各具有不同的优缺点,基于固定划分和过间隔技术,提出了使用多支持向量机进行增量学习的算法;使用此算法,针对标准数据集BUPA及用NDC生成的数据集OUTTRAIN进行了实验,结果表明,使用单一的支持向量机进行增量学习,不论采用过间隔还是固定划分技术,其增量学习的正确率不及使用多支持向量机增量学习算法的正确率. 相似文献
19.
一种新的支持向量分类算法ACNN-SVM 总被引:1,自引:0,他引:1
针对NN-SVM算法的不足,提出了一种新的支持向量分类算法--ACNN-SVM.先对训练样本集进行最近邻修剪,用SVM训练得到一个SVM模型,然后,计算最近邻修剪后的训练样本集中样本到超平面的距离,如果距离差大于给定的阈值则将其从最近邻修剪后的训练样本集中删除,最后对冉修剪后的样本集用SVM训练得到一个最终的SVM模型.实验表明,ACNN-SVM算法的效果优于NN-SVM算法. 相似文献
20.
首先概述了支持向量机的发展与应用,指出其在机器学习领域有较大的发展前景.分析了支持向量机的基本算法,进而阐述了基于支持向量机的机器学习模型构造思路.给出了其应用于机器学习模型的核函数和训练算法,最后给出了学习模型的具体分类效果. 相似文献