首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
运用第一性原理的LDA+U(U_(Ti-3d)=7eV,U_(O-2p)=4eV)方法研究了N掺杂金红石TiO_2的电子结构和光学吸收性质。研究表明N元素的掺杂可以降低TiO_2的禁带宽度并在带隙中引入杂质能级。杂质能级主要由O-2p轨道和N-2p轨道之间的耦合形成。杂质能级的引入以及带隙宽度的降低可以增加TiO_2对可见光的响应,并提高Ti O2的光催化活性。费米能级附近的态密度由O-2p轨道和N-2p轨道之间的耦合形成π键构成,电子占据π键态和空的σ键态能级差大约为0.4 eV,可使N掺杂Ti O2的光学吸收边落在在红外区域,即发生了所谓的光学吸收边的红移现象。  相似文献   

2.
文章采用周期性密度泛函理论,研究了Cu掺杂于锐钛矿TiO_2晶体、吸附和掺杂于TiO_2(001)和(101)表面及次表面后晶体结构的变化及形成能,并讨论了能带结构及态密度的变化.通过形成能的比较发现,Cu最佳掺杂位为TiO_2(001)表面空穴位,且掺杂后TiO_2禁带宽度明显减小并出现半金属性.通过态密度分析可以看出最佳掺杂位Cu-O之间发生较强p-d杂化,证明CuO相的出现.上述结果与实验吻合较好,有效揭示Cu掺杂TiO_2的微观机理  相似文献   

3.
基于周期性密度泛函理论,本文研究了Fe在锐钛矿TiO2(001)面吸附、替位掺杂及晶隙掺杂,以及N在Fe/TiO2(001)稳定结构上的吸附及掺杂.讨论了不同掺杂后晶体稳定结构、形成能、能带结构及态密度的变化.为与表面氧空位进行对比,计算了氧空位存在下TiO2(001)面的能带结构.通过形成能的比较可以发现,Fe原子更倾向于掺杂在晶体(001)表面晶隙,N则倾向于吸附在Fe顶部,并形成稳定的N-Fe键.通过对电子结构的分析发现:稳定的N-Fe共吸附形式,使得TiO2呈现出金属性,有利于其催化氧化性能的提升.  相似文献   

4.
利用基于密度泛函理论的第一性原理计算研究了Cu掺杂的A-TiO_2的电子结构和光学性质.结果表明,p型Cu掺杂会在禁带中引入杂质能级,同时杂质能级的数目随着掺杂Cu原子的增加而增多.由于杂质能级的出现,掺杂体系的禁带宽度变宽但有效禁带宽度降低,电子从低能级向高能级跃迁所需的光子能量变小,掺杂体系吸收谱的吸收峰发生明显的红移.掺杂体系在可见光区(680nm处)出现新的吸收峰,当Cu原子掺杂摩尔分数为4.17%时,A-TiO_2对可见光的净吸收最优,可有效提升A-TiO_2光催化剂的性能.可为制备高效的TiO_2半导体光催化材料研究提供参考.  相似文献   

5.
利用密度泛函理论(DFT)的平面波赝势方法计算了不同注入电荷和掺杂Fe原子比例的PdxFey(110)表面原子结构和电子结构特性。结果表明,Fe原子比例对表面褶皱s影响较小,注入电荷数量对表面褶皱s影响很大;Fe原子掺杂使Pd的4d10轨道电子向低能级轨道移动,增加了d空穴。布居分析表明电极的表层电荷分布比金属态表面增多;Fe掺杂的表层电荷分布比不掺杂电极表面增多。电子结构分析表明,电极表面的s、p、d轨道电子和总电子均比金属态表面减少;Fe掺杂后,Pd和Fe的表面原子趋向于杂化构型,Pd表层原子向Fe表层原子发生电子转移,增加表面反应活性,有利于电催化反应。  相似文献   

6.
运用密度泛函理论研究了未掺杂、体相掺杂和表层掺杂碳的锐钛矿型二氧化钛(101)晶面(TiO_2(101))上水吸附及其分解动力学。结果表明:分子态水在3种表面上吸附结构比解离态的吸附结构更稳定,说明水在这3种表面上自发解离在热力学上是不允许的。进一步对3种表面上水解离的动力学研究表明:表面掺杂碳的TiO_2(101)上水解离的势垒最低,水在这个面上解离速度最快。这归因于表面碳掺杂对TiO_2(101)面的表层结构有很大影响。  相似文献   

7.
采用DV-Xa分子轨道法计算了不同掺杂浓度的立方结构钙钛矿La_(1-x)Ca_xMnO_3体系的电子结构,分析了体系磁电特性随钙浓度变化的特征.结果表明:自旋相关的锰3d—氧2p轨道杂化出现在整个体系中.未掺杂体系具有金属型导电性,费米能级处多数自旋子带的态密度高于少数子带.随着掺杂浓度的提高,体系发生金属-半金属相变.与此同时,锰离子磁矩单调降低,与3d带自旋交换劈裂的变化规律一致.掺杂的钙提高了锰3d和氧2p电子波函数的交迭,加强了Mn-O-Mn超交换作用,使CaMnO3呈现G型反铁磁态.LaMnO_3中锰3d和氧2p波函数的交迭最弱,呈铁磁有序.  相似文献   

8.
采用了基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法,计算了本征TiO_2,Cu、Fe单掺杂及共掺杂TiO_2电子结构和光学性质.计算结果表明:Cu掺杂属于p型掺杂,Fe掺杂均属于n型掺杂,掺杂能够提升TiO_2的载流子浓度,改善其导电性.掺杂后,半导体的吸收边发生红移,且光学性质变化主要集中在低能量区域.Cu-Fe共掺杂时,掺杂体系同时拥有较大的吸收系数与反射率,且能够明显降低紫外线透射率,具有较好的抗紫外线效果.  相似文献   

9.
采用第一性原理计算了Mn掺杂GaN非极性(100)薄膜的原子和电子结构.结果表明弛豫后表层Ga原子向体内移动,与Ga原子成键的表层N原子向体外移动,表层Ga-N键长收缩并扭转.通过对Mn原子掺杂在不同层总能量的比较,发现GaN(100)薄膜中Mn原子更容易在表层掺杂.弛豫后,掺杂在表层的Mn原子及与Mn原子成键的表层N原子都向体内发生很小的移动,Mn-N键没有发生明显扭转,但是弛豫后N原子向Mn原子靠近,Mn-N键收缩.Mn原子的掺杂使得Mn3d与N2p轨道杂化,产生自旋极化杂质带,自旋向上的能带占据费米面.掺杂后的薄膜表现为半金属性,适合于自旋注入.  相似文献   

10.
采用自旋极化密度泛函理论的第一性原理计算方法,研究了非金属元素B或N替位掺杂对单层SnO电子结构和磁学性质的影响.计算结果表明,B或N原子掺杂单层SnO可以诱导出磁性,磁矩分别为0.84μB,0.44μB.在B-SnO掺杂体系中,磁矩主要来源于B-2p轨道和与之近邻的Sn-5p轨道.在N-SnO掺杂体系中,磁性主要来源于Sn-5p、O-2p和N-2p轨道.进一步研究两个B或两个N原子掺杂单层SnO的磁耦合发现,双B原子掺杂SnO超原胞的C1构型最为稳定,双N原子掺杂SnO超原胞的C4构型最为稳定,且都呈现出顺磁性.形成能计算表明,富Sn条件下更易于实现双原子掺杂.  相似文献   

11.
采用基于第一性原理的密度泛函理论计算,系统研究了块体Cu_2O的电子结构和光学性质.结果表明,块体Cu_2O为直接带隙半导体,最小禁带宽度为0.52e V;其价带顶主要Cu-3d态电子和O-2p态电子构成,而导带底则主要由Cu-4p态电子和O-2p态电子共同决定;块体Cu_2O的静态介电常数为8.27,光吸收系数最大峰值1.83×105cm-1,研究结果为Cu_2O在光电器件方面的应用提供了理论基础.  相似文献   

12.
采用一步水热法制备了由高能(001)晶面外露的锐钛矿相单晶组装而成的TiO_2微球.通过反应体系p H值的调控可以对TiO_2微球的微观形貌进行调控.对TiO_2微球的生长机理进行了分析.结果表明:适中的氢氟酸分子浓度对高能(001)晶面的稳定至关重要.进一步的研究表明,得益于高能(001)晶面的外露以及独特的分级形貌,这种TiO_2微球对丙酮表现出了优异的气敏性能.  相似文献   

13.
采用基于密度泛函(DFT)理论的第一性原理平面波超软赝势计算方法,对Zn2SiO4∶Mn2+的电子结构(能结构、态密度)和光学性质进行了理论计算。计算结果表明,Zn2SiO4∶Mn2+是一种间接带隙半导体,禁带宽度为2.934 eV;其能态密度主要由Zn-3d,O-2p和Si-3p决定;静态介电函数ε1(0)=2.82;折射率n0=1.75;吸收系数最大峰值为7.37×104cm-1;利用计算的能带结构和态密度分析了Zn2SiO4∶Mn2+材料的介电函数、反射谱、复折射率以及消光系数等光学性质,为Zn2SiO4∶Mn2+发光材料的设计与应用提供了理论依据。  相似文献   

14.
采用基于密度泛函理论(DFT)平面波超软赝势方法并选择GGA+ PBE相关泛函理论,计算并对比了纯MgF2晶体、Fe掺杂MgF2晶体、N掺杂MgFz晶体和(Fe,N)不同位置双掺杂MgF2晶体的晶体结构、电子结构以及吸收光谱.研究了不同替位掺杂方式对MgF2光催化活性的影响,并在此基础上给出了掺杂后离子之间的协同作用机理.结果表明:Fe和N近邻双掺杂在可见光范围内的光吸收效率较非近邻更强,为(Fe,N)双掺杂调制的较佳方式.  相似文献   

15.
目的计算分析Y-Nb共掺杂对金红石型TiO2的微观结构、电子结构和光学性质的影响,为实验研究和实际应用提供理论依据。方法采用基于密度泛函理论的第一性原理平面波超软赝势计算方法。结果Y掺杂后禁带宽度减小,出现受主能级并跨越了费米能级,低能区出现介电峰,价带主要由O2p态、Ti3d和Y3p4d态共同构成;Nb掺杂后禁带宽度有所减小,价带和导带整体负移,但是对介电峰没有明显的影响;Y-Nb共掺杂的形成能最低,杂质原子引起了晶格结构的畸变,使得以Ti为中心和分别以Y、Nb为中心的氧八面体正负电荷中心分离,从而产生内偶极矩,有利于光生电子空穴对的分离。结论Y-Nb共掺杂极大地减小了禁带的宽度,提高了金红石型TiO2对可见光吸收性,从而减少电子从价带跃迁到导带所需的能量。  相似文献   

16.
目的计算分析Y-Nb共掺杂对金红石型TiO2的微观结构、电子结构和光学性质的影响,为实验研究和实际应用提供理论依据。方法采用基于密度泛函理论的第一性原理平面波超软赝势计算方法。结果 Y掺杂后禁带宽度减小,出现受主能级并跨越了费米能级,低能区出现介电峰,价带主要由O 2p态、Ti 3d和Y 3p4d态共同构成;Nb掺杂后禁带宽度有所减小,价带和导带整体负移,但是对介电峰没有明显的影响;Y-Nb共掺杂的形成能最低,杂质原子引起了晶格结构的畸变,使得以Ti为中心和分别以Y、Nb为中心的氧八面体正负电荷中心分离,从而产生内偶极矩,有利于光生电子空穴对的分离。结论 Y-Nb共掺杂极大地减小了禁带的宽度,提高了金红石型TiO2对可见光吸收性,从而减少电子从价带跃迁到导带所需的能量。  相似文献   

17.
基于(Cu,N)共掺杂Ti O2(001)表面最稳定结构,采用第一性原理计算了有毒气体CO、NO和NH3在上述表面不同原子位的吸附,通过吸附能的比较得出了最佳吸附位置及吸附结构;通过对吸附后原子态密度的计算,分析了气体的最佳化学吸附的物理机制。最后,文章还将计算结果与其在其它表面状态下的前人结果进行了对比。  相似文献   

18.
基于密度泛函理论框架下的第一性原理计算方法,研究了Cu掺杂纤锌矿ZnO体系的电子结构和光学性质.计算结果表明,当Cu掺杂的原子百分比为4.17%时体系的光学吸收性能最好,且在可见光区出现了新的吸收峰.电子结构的分析表明,Cu的引入可以在体系的费米能级引入由Cu-3d电子和O-2p电子相互作用形成的杂质能级,价电子由eg能级向tg能级跃迁吸收的最小光子能量约为0.12 e V,这使得Cu掺杂的ZnO体系的光学吸收边落在了红外光区,同时杂质能级的出现降低了ZnO体系的禁带宽度,提升了ZnO半导体材料对长波光子的响应并有效改善ZnO半导体的光催化活性.  相似文献   

19.
本文通过原子簇模型用离散变分法自洽地计算了刚玉晶体中部份过渡金属元素引入的杂质态,并与纯净刚玉晶体的电子结构作了比较。计算结果表明:杂质在禁带中都引入杂质能级,在给定的掺杂浓度下,能级的多少与杂质元素的原子序数有关。Ti只引入了一个杂质能级,Cr及V引入二个杂质能级,Mn、Fe及Cu引入三个能级,其中Cu、Fe有一个能级已进入价带。掺杂晶体与纯净晶体相同,其导带由O_3Al_3 带杂化而成,价带为O_(2p)带。但整个能带与纯净晶体相比都向能量值小的方向移动,且价带加宽,禁带变窄。变化规律与掺杂元素的原子序数、电子数、离子半径有关。  相似文献   

20.
采用基于密度泛函理论(DFT)的第一性原理对Zn掺杂锐钛矿TiO_2进行了结构优化,并对掺杂前后的能带结构、电子态密度和吸收光谱进行了计算。研究表明:Zn掺杂锐钛矿TiO_2体系为间接带隙半导体,在价带顶部引入了杂质能级,杂质能级主要由O-2p轨道和Zn-3d轨道贡献,杂质能级的引入增强了TiO_2对可见光区的响应,增大TiO_2的光吸收范围。实验结果表明:Zn掺杂使锐钛矿TiO_2吸收边红移,并能增强TiO_2的光电效应,可用于材料的光阴极保护。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号