首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用分子动力学模拟的方法研究了硅针尖在金刚石基底滑动的黏滑现象,讨论了纳米尺度下温度、滑动速度、载荷等因素对黏滑摩擦的影响.模拟结果表明,在纳米尺度下,原子排列规则的两固体间的滑动摩擦力呈现出周期性的锯齿型变化.摩擦力曲线的波动周期取决于滑动过程中基体沿滑动方向的晶格常数,同时受接触面原子排列结构变化的影响.在较低温度范围内,滑动摩擦力随温度的升高近似呈线性减小,对滑动摩擦力的波动周期和振幅影响不大.在一定速度范围内,滑动摩擦力主要受黏着作用的影响,滑动摩擦力的大小随速度的增大近似呈线性增大.在一定载荷范围内,滑动摩擦力随载荷的增大近似呈线性增大,振动周期变大.  相似文献   

2.
采用分子动力学模拟,研究了纳米尺度水薄膜厚度和系统温度对液-气相变蒸发率的影响.模拟了水薄膜厚度为2nm时,温度(375~425K)对相变蒸发率的影响;同时模拟了温度400K条件下,水薄膜厚度(2、3、4nm)对相变蒸发率的影响.结果表明:相同水薄膜厚度下蒸发率随着温度的升高而增大,相同温度下蒸发率随水薄膜厚度的增大而增大,蒸发率随时间呈指数形式递减.相关结果可为微热管及其他依靠内部液体相变传热的散热器件设计提供参考.  相似文献   

3.
运用分子动力学模拟方法研究20 MPa, 318.15 K条件下水超临界二氧化碳界面的微观结构及其自扩散性质,模拟采用TIP3P (transferable intermolecular potentials 3P)水分子模型和EPM2 (elementary physical model 2)二氧化碳分子势能模型.研究结果表明:水相和二氧化碳相形成明显的界面,界面层的分子有特定的取向;自扩散表现出明显的各向异性特点,并且在界面层二氧化碳与水的扩散趋于一致.  相似文献   

4.
油水界面上AOT聚集行为的分子动力学模拟   总被引:2,自引:0,他引:2  
用分子动力学模拟(MD)方法研究了2-乙基己基琥珀酸酯磺酸钠(AOT)在异辛烷/水界面的聚集行为.结果发现:AOT作为界面改性剂可以在油水界面形成单分子层,并随着浓度的增加从不饱和到饱和、从无序到有序发展;由于存在静电相互作用,盐(NaCl)的加入可以改变表面活性剂在油水界面的排列.  相似文献   

5.
应用Lennard-Jone作用势,在300K和0.1MPa条件下,对边长20nm的立方体孔隙内氮气的导热系数进行了平衡分子动力学模拟. 结果得出分子分速度和速率的分布与统计力学得到的Maxwell速度和速率分布曲线基本一致,并且分子的平均自由程受到孔隙壁的严格限制. 通过Green-Kubo关系式计算得出了孔隙内氮气的导热系数,并与文献中的结果进行了比较,模拟结果接近于实验值,仅为同样条件下自由空间氮气的导热系数的1/3左右.  相似文献   

6.
碳化硅(SiC)制备在核燃料研究中具有重要意义,例如新型事故容错核燃料采用SiC作为关键基体材料。研究SiC纳米包覆颗粒的烧结行为对优化新型核燃料基体材料制备工艺具有指导意义。该文根据纳米颗粒熔点变化规律,验证了Tersoff势函数进行SiC分子动力学模拟的可行性和模型参数的准确性;考察了纯相SiC、富硅(SiC@Si)和富碳(SiC@C)这3种典型SiC纳米颗粒的烧结演化过程;并对烧结过程进行了定量描述,通过烧结颈生长、能量演变和原子扩散等参量分析了烧结机制,重点关注包覆层结构对SiC烧结行为的影响,从而获得包覆颗粒烧结机理。研究结果表明:包覆层的原子扩散性会促进颗粒原子整体迁移,从而加速整体烧结行为。SiC@Si颗粒比SiC@C颗粒更易发生包覆层原子扩散,因而SiC@Si颗粒更易发生烧结;较低的加热速率在一定程度上有利于烧结进行,但并不影响包覆颗粒的原子扩散模式。研究结果对SiC纳米颗粒烧结机制给出了定量解释,有助于理解SiC烧结制备过程的规律。  相似文献   

7.
采用分子动力学模拟方法,对纳米尺度下的等大并列双圆柱绕流问题进行了数值研究.模拟结果表明:在低雷诺数(Re=22)、纳米尺度下,同样存在由于L^*/D^*(L^*为两圆柱轴线之间的距离,D^*为圆柱的直径)值的变化,导致流场内呈现出单涡脱落、双稳态以及双涡对称同步脱落的不同流动状态,这与宏观尺度下的研究结论相一致.然而,各种流动状态所对应的L^*/D^*范围却与宏观尺度下的数值和实验研究结果不一致.单涡脱落区域为L^*/D^*〈1.1,双稳态现象出现的区域为1.1%L^*/D^*〈1.8,且由于间隙流的影响,当L^*/D^*一1.2时,就已出现了典型的双稳态现象,双涡对称同步脱落区域为L^*/D^*〉1.8.微观尺度下的3种不同特性的流动状态均比宏观研究结果提前,表明流动状态的变化具有明显的尺度特征.  相似文献   

8.
为了研究微纳尺度下流体密度、壁面剪切速度以及不同材料的壁面对流体流动特性的影响,采用分子动力学方法对流体在微纳尺度下的Couette流动进行模拟。研究结果表明:随着流体密度增加流体与壁面作用力增大,壁面对近壁流体的束缚也增强,近壁面处流体粒子自由运动减弱导致流体扩散能力下降,同时流体等效黏度随密度增加而增大,滑移量减小;壁面剪切速度增大,导致近壁面处流体粒子数减少,流体等效黏度降低,流体粒子在通道中更容易进行无规则自由运动使其扩散能力增强;通过改变壁面材料,发现金属壁面作用力强于非金属,在金属材料近壁面处更容易吸附较多流体粒子,导致金属壁面附近流体等效黏度较大,滑移量相对较小。  相似文献   

9.
利用分子动力学模拟技术考察受限于3种不同材料的纳米孔道(单壁碳管、硼氮管、铁原子孔道)中水分子的静态结构与扩散动力学,计算孔道中水分子沿轴向的自扩散系数Dz,讨论孔道截面尺寸、形状以及组成材料的变化对水分子扩散动力学的影响.结果表明,水分子的轴向自扩散系数随孔道半径的增大而减小,光滑的孔道壁有利于水分子的运输.在3种孔道限制体中,水分子在单壁碳纳米管内的自扩散系数最大.  相似文献   

10.
运用分子动力学方法构建了纳米尺度的输运模型,针对纳米通道内水分子的流动与传热特性,分析了通道内压-电场耦合下水的速度分布、密度分布、自扩散系数和黏度等流动特性,同时也讨论了温度对通道内热导率的影响.模拟结果表明,速度轮廓从单纯电场驱动的电渗流型开始转变,由于压力的影响,速度分布呈抛物线型,速度随温度的升高而增大;温度的...  相似文献   

11.
为了研究微量润滑磨削界面的冷却润滑效应,以离子液体作为微量润滑磨削液,对微量润滑磨削界面进行了分子动力学模拟研究。分析了微量润滑磨削界面的热量分配关系,揭示了磨削界面热量的产生与传散机制,研究了磨削过程中磨削力、磨削力比以及磨粒工件之间液膜状态的变化。结果表明:离子液体雾滴在磨削界面的冷却效果显著,工件的热量分配比由干磨时的74.1%减小到微量润滑磨削时的68%~69%;磨削热主要来源于剪切变形区内工件材料发生的晶格变形,其次是磨粒与工件之间的摩擦;磨削热首先在工件基体、磨粒和切屑之间传递,然后经切屑传递给雾滴,雾滴再传递给磨粒;磨削力随未变形切屑厚度的增加而线性增大;当磨粒切入工件形成切削作用时,磨粒-工件界面和磨粒-切屑界面会产生极高的挤压应力,导致难以形成边界润滑膜。  相似文献   

12.
采用分子动力学模拟研究了SDBS/BMAB体系的油水界面自组装行为机理.通过模拟SDBS/BMAB体系的界面吸附构型来探索自组装行为机理,并给出了SDBS和BMAB在界面上的吸附过程.表面张力的模拟结果与实验数据有高度的吻合性.根据模拟结果,提出了SDBS/BMAB体系在界面上的自组装结构形成原因.同时,计算了密度曲线、径向分布函数和单层膜扩散系数,根据计算结果提出并探究了SDBS与BMAB之间的界面自组装对于降低界面张力的影响.  相似文献   

13.
碳纳米管与基体之间的热耦合对纳米结构界面热输运起主导作用。采用非平衡态分子动力学模拟了垂直生长多壁碳纳米管与Si基体之间的热耦合,得到界面热导的温度效应和作用力效应并利用声子输运理论进行了分析。低温下多壁碳纳米管与Si之间声子的态密度匹配较好,界面热输运能力主要取决于界面两侧低频声子的耦合振动,高温下近界面区域内热输运能力受高频声子的非弹性散射影响而逐渐增强。随着范德瓦尔斯力增强,界面热导线性增大。  相似文献   

14.
利用多尺度方法研究包含微裂纹金属材料在加载条件下的动力学行为.多尺度方法结合了分子动力学和自适应有限元方法.分子动力学方法用于局部缺陷区域,有限元方法用于整个模型区域,两种方法之间用桥尺度函数进行连接.计算结果既包括了系统宏观的物理信息(应变场、应力场等),也包括了微观原子的物理信息(原子位置坐标等).模拟结果发现,在裂尖的传播过程中将发射位错,同时,拉伸应力和应变将主要集中在裂纹的两端.正是由于应力的集中导致了裂纹的进一步加速传播,最后形成宏观的断裂效应.  相似文献   

15.
作者利用壳层模型分子动力学对锐钛矿在室温下的压缩行为进行了研究.基于常压下的状态方程作者得到了锐钛矿的晶格常数、弹性常量和体变模量.与此同时作者还研究了晶格常数a和c,以及原胞体积和压强的关系.其计算结果和已有的实验结果符合得较好.  相似文献   

16.
在1.01×105 Pa的NPV系综下,从300 K逐渐降温至190 K(或150 K),对受限于不同直径(11.001~13.751A°)纳米碳管中的水分子进行了分子动力学模拟研究,发现不同直径碳管中的水分子会发生无序-有序的相变,并且分别形成不同的稳定结构。水分子的偶极矩角度分布函数图表明不同直径管中水分子相变温度不同,并且相变温度随着管径的增加而降低。  相似文献   

17.
采用分子动力学模拟方法研究了不同尺寸Au纳米颗粒在烧结过程中晶型转变及烧结颈长大机制.研究发现纳米颗粒的烧结颈生长主要分为两个阶段:初始烧结颈的快速形成阶段和烧结颈的稳定长大阶段.不同尺寸纳米颗粒烧结过程中烧结颈长大的主要机制不同:当颗粒尺寸为4 nm时,原子迁移主要受晶界(或位错)滑移、表面扩散和黏性流动控制;当尺寸在6nm左右时,原子迁移主要受晶界扩散、表面扩散和黏性流动控制;当颗粒尺寸为9 nm时,原子迁移主要受晶界扩散和表面扩散控制.烧结过程中Au颗粒的fcc结构会向无定形结构转变.此外,小尺寸的纳米颗粒在烧结过程中由于位错或晶界滑移、原子的黏性流动等因素会形成hcp结构.  相似文献   

18.
纳米粒子介电泳的分子动力学模拟   总被引:1,自引:0,他引:1  
为研究微流体环境下纳米粒子的介电泳现象并分析其介电泳特性,采用非平衡态分子动力学方法对纳米胶体粒子及其周围溶剂粒子进行建模.介电泳模拟之前,通过对系统能量和温度的趋衡过程进行模拟,使纳米胶体所处的微流体系统达到稳定状态,并得出系统能量以及温度变化过程的趋衡图.对纳米胶体模型施加非均匀电场,使胶体电偶极化.变化非均匀电场强度,研究胶体模型失效的一般规律.发现随着非均匀电场强度的增加,小离子有不断脱离大离子表面的趋势,胶体模型失效的临界电场强度参数为Eo=15s/(eó).此外,对不同极性的纳米胶体的介电泳现象进行模拟,发现在正介电泳情况下,胶体的电偶极距不断增大,且电偶极距大的胶体有较大的介电泳速度和位移.  相似文献   

19.
我们基于分子动力学(Molecular Dynamics), 建立了石墨烯纳米压痕实验的数值模型, 以模拟压痕实验过程, 得到典型实验过程的力-位移曲线, 并进而讨论压头下压速度, 压头半径以及边界条件等因素对实验结果的影响. 论文测得石墨烯弹性模量为1 TPa, 强度为240 GPa. 加载过程中, 压头加载到临界压入深度hc时, 石墨烯试件在压头处撕裂破坏. 给定最大压入深度, 对石墨烯进行加载—卸载—再加载试验, 发现当最大压入深度hmax小于hc时, 石墨烯发生的是完全弹性变形; 当最大压入深度hmax大于hc时, 卸载和再加载过程中石墨烯能基本恢复原貌, 但仍有少数C—C键较长而无法恢复, 成为石墨烯再加载时的破坏起点, 石墨烯的破坏力和位移都显著下降. 另外, 还发现大于0.05 nm/ps的压头速度和压头半径对石墨烯临界压入深度和破坏力都有显著影响.  相似文献   

20.
石墨烯纳米带热导率的分子动力学模拟   总被引:1,自引:0,他引:1  
采用非平衡态分子动力学方法研究了石墨烯纳米带的热导率随温度变化的关系.通过在纳米带长度方向上施加周期性边界条件,利用Tersoff作用势和Fourier定律计算热导率.由于模拟尺寸较小时热导率随纳米带长度的增加而单调增加,为了减小长度对石墨烯纳米带热导率的影响,采用倒数拟合的方法消除了尺寸效应.模拟结果表明,石墨烯纳米带热导率随温度升高逐渐减小,这与高温下Umklapp散射作用的增强有关.结果还表明,在实际宽度近似相等的条件下,锯齿形纳米带的热导率明显高于扶手椅形,且对相同类型的纳米带,其热导率随宽度的增加而增加,表明纳米带的手性和宽度是影响石墨烯纳米带导热性能的重要参数.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号