首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Stem and progenitor cells are characterized by their ability to self-renew and produce differentiated progeny. A fine balance between these processes is achieved through controlled asymmetric divisions and is necessary to generate cellular diversity during development and to maintain adult tissue homeostasis. Disruption of this balance may result in premature depletion of the stem/progenitor cell pool, or abnormal growth. In many tissues, including the brain, dysregulated asymmetric divisions are associated with cancer. Whether there is a causal relationship between asymmetric cell division defects and cancer initiation is as yet not known. Here, we review the cellular and molecular mechanisms that regulate asymmetric cell divisions in the neural lineage and discuss the potential connections between this regulatory machinery and cancer.  相似文献   

2.
Apical–basal polarity is an important characteristic of epithelia and Drosophila neural stem cells. The conserved Par complex, which consists of the atypical protein kinase C and the scaffold proteins Baz and Par6, is a key player in the establishment of apical–basal cell polarity. Membrane recruitment of Baz has been reported to be accomplished by several mechanisms, which might function in redundancy, to ensure the correct localization of the complex. However, none of the described interactions was sufficient to displace the protein from the apical junctions. Here, we dissected the role of the oligomerization domain and the lipid-binding motif of Baz in vivo in the Drosophila embryo. We found that these domains function in redundancy to ensure the apical junctional localization of Baz: inactivation of only one domain is not sufficient to disrupt the function of Baz during apical–basal polarization of epithelial cells and neural stem cells. In contrast, mutation of both domains results in a strongly impaired protein stability and a phenotype characterized by embryonic lethality and an impaired apical–basal polarity in the embryonic epithelium and neural stem cells, resembling a baz-loss of function allele. Strikingly, the binding of Baz to the transmembrane proteins E-Cadherin, Echinoid, and Starry Night was not affected in this mutant protein. Our findings reveal a redundant function of the oligomerization and the lipid-binding domain, which is required for protein stability, correct subcellular localization, and apical–basal cell polarization.  相似文献   

3.
The bipolar kinesin-5 motors perform essential functions in mitotic spindle dynamics. We previously demonstrated that phosphorylation of at least one of the Cdk1 sites in the catalytic domain of the Saccharomyces cerevisiae kinesin-5 Cin8 (S277, T285, S493) regulates its localization to the anaphase spindle. The contribution of these three sites to phospho-regulation of Cin8, as well as the timing of such contributions, remains unknown. Here, we examined the function and spindle localization of phospho-deficient (serine/threonine to alanine) and phospho-mimic (serine/threonine to aspartic acid) Cin8 mutants. In vitro, the three Cdk1 sites undergo phosphorylation by Clb2-Cdk1. In cells, phosphorylation of Cin8 affects two aspects of its localization to the anaphase spindle, translocation from the spindle-pole bodies (SPBs) region to spindle microtubules (MTs) and the midzone, and detachment from the mitotic spindle. We found that phosphorylation of S277 is essential for the translocation of Cin8 from SPBs to spindle MTs and the subsequent detachment from the spindle. Phosphorylation of T285 mainly affects the detachment of Cin8 from spindle MTs during anaphase, while phosphorylation at S493 affects both the translocation of Cin8 from SPBs to the spindle and detachment from the spindle. Only S493 phosphorylation affected the anaphase spindle elongation rate. We conclude that each phosphorylation site plays a unique role in regulating Cin8 functions and postulate a model in which the timing and extent of phosphorylation of the three sites orchestrates the anaphase function of Cin8.  相似文献   

4.
5.
Summary The chromosomes of the so-called rice water weevil,Lissorhoptrus oryzophilus, Kuschel obtained from Tokoname City, Aichi Prefecture, were studied in both oogonial and oocyte-maturation divisions in squash and sectioned slides, respectively. The chromosome number was confirmed as exactly 33 in both divisions. No reduction division takes place. It is therefore concluded thatLissorhoptrus oryzophilus is a parthenogenetic triploid in Tokoname City.  相似文献   

6.
R Montesano 《Experientia》1986,42(9):977-985
We briefly review evidence from in vitro models that supports a role for the extracellular matrix in two essential steps of organogenesis: the establishment of appropriate three-dimensional cell-to-cell relationships, and the determination of a correct cell polarity.  相似文献   

7.
Summary We briefly review evidence from in vitro models that supports a role for the extracellular matrix in two essential steps of organogenesis: the establishment of appropriate three-dimensional cell-to-cell relationships, and the determination of a correct cell polarity.  相似文献   

8.
Chemotaxis, or directed migration of cells along a chemical gradient, is a highly coordinated process that involves gradient sensing, motility, and polarity. Most of our understanding of chemotaxis comes from studies of cells undergoing amoeboid-type migration, in particular the social amoeba Dictyostelium discoideum and leukocytes. In these amoeboid cells the molecular events leading to directed migration can be conceptually divided into four interacting networks: receptor/G protein, signal transduction, cytoskeleton, and polarity. The signal transduction network occupies a central position in this scheme as it receives direct input from the receptor/G protein network, as well as feedback from the cytoskeletal and polarity networks. Multiple overlapping modules within the signal transduction network transmit the signals to the actin cytoskeleton network leading to biased pseudopod protrusion in the direction of the gradient. The overall architecture of the networks, as well as the individual signaling modules, is remarkably conserved between Dictyostelium and mammalian leukocytes, and the similarities and differences between the two systems are the subject of this review.  相似文献   

9.
The kinesin-related protein HsEg5 plays essential roles in mitotic spindle dynamics. Although inhibition of HsEg5 has been suggested as an aid in cancer treatment, the effects of such inhibition on human cells have not been characterized. Here we studied the effects of monastrol, an allosteric HsEg5 inhibitor, on AGS and HT29 cell lines and compared them to those of taxol. While both cell lines were similarly sensitive to taxol, AGS cells were more sensitive to monastrol. The differences in sensitivity were determined by the degree of inhibitory effect on cell proliferation, reversibility of monastrol-induced G2/M arrest, intracellular phenotypes and induction of apoptosis. In both cell lines, monastrol-induced apoptosis was accompanied by mitochondrial membrane depolarization and poly-ADP-ribose polymerase 1 cleavage. In AGS, but not HT29 cells, monastrol-induced apoptosis involved a prominent cleavage of procaspases 8 and 3. While in AGS cells, monastrol induced the formation of symmetric microtubule asters only, in HT29 cells, asymmetric asters were also formed, which may be related to specific HsEg5 functions in HT29 cells.Received 18 February 2004; received after revision 30 May 2004; accepted 16 June 2004  相似文献   

10.
The mitotic spindle uses dynamic microtubules and mitotic motors to generate the pico-Newton scale forces that are needed to drive the mitotic movements that underlie chromosome capture, alignment and segregation. Here, we consider the biophysical and molecular basis of force-generation for chromosome movements in the spindle, and, with reference to the Drosophila embryo mitotic spindle, we briefly discuss how mathematical modeling can complement experimental analysis to illuminate the mechanisms of chromosome-to-pole motility during anaphase A and spindle elongation during anaphase B.  相似文献   

11.
Résumé Par la chromatographie en couches minces, l'activité antitumorale de l'extrait lipidique obtenu d'une souche deStreptococcus hemolyticus a été reconnue dans les trois composants: acids gras, monoglycérides et stérols estérifiés.  相似文献   

12.
Mitotic kinesin-5 bipolar motor proteins perform essential functions in mitotic spindle dynamics by crosslinking and sliding antiparallel microtubules (MTs) apart within the mitotic spindle. Two recent studies have indicated that single molecules of Cin8, the Saccharomyces cerevisiae kinesin-5 homolog, are minus end-directed when moving on single MTs, yet switch directionality under certain experimental conditions (Gerson-Gurwitz et al., EMBO J 30:4942–4954, 2011; Roostalu et al., Science 332:94–99, 2011). This finding was unexpected since the Cin8 catalytic motor domain is located at the N-terminus of the protein, and such kinesins have been previously thought to be exclusively plus end-directed. In addition, the essential intracellular functions of kinesin-5 motors in separating spindle poles during mitosis can only be accomplished by plus end-directed motility during antiparallel sliding of the spindle MTs. Thus, the mechanism and possible physiological role of the minus end-directed motility of kinesin-5 motors remain unclear. Experimental and theoretical studies from several laboratories in recent years have identified additional kinesin-5 motors that are bidirectional, revealed structural determinants that regulate directionality, examined the possible mechanisms involved and have proposed physiological roles for the minus end-directed motility of kinesin-5 motors. Here, we summarize our current understanding of the remarkable ability of certain kinesin-5 motors to switch directionality when moving along MTs.  相似文献   

13.
Polarity is a fundamental feature of cells. Protein complexes, including the PAR3–PAR6–aPKC complex, have conserved roles in establishing polarity across a number of eukaryotic cell types. In neurons, polarity is evident as distinct axonal versus dendritic domains. The PAR3, PAR6, and aPKC proteins also play important roles in neuronal polarization. During this process, either aPKC kinase activity, the assembly of the PAR3–PAR6–aPKC complex or the localization of these proteins is regulated downstream of a number of signaling pathways. In turn, the PAR3, PAR6, and aPKC proteins control various effector molecules to establish neuronal polarity. Herein, we discuss the many signaling mechanisms and effector functions that have been linked to PAR3, PAR6, and aPKC during the establishment of neuronal polarity.  相似文献   

14.
Loss of chromosome integrity is a major contributor to cancer. Checkpoints within the cell division cycle that facilitate the accuracy and outcome of chromosome segregation are thus critical pathways for preserving chromosome integrity and preventing chromosomal instability. The spindle assembly checkpoint, the decatenation checkpoint and the post-mitotic tetraploidy checkpoint ensure the appropriate establishment of the spindle apparatus, block mitotic entry upon entanglement of chromosomes or prevent further progression of post-mitotic cells that display massive spindle defects. Most of our knowledge on these mechanisms originates from studies conducted in yeast, cancer cell lines and differentiated cells. Considering that in many instances cancer derives from transformed stem and progenitor cells, our knowledge on these checkpoints in these cells just started to emerge. With this review, we provide a general overview of the current knowledge of these checkpoints in embryonic as well as in adult stem and progenitor cells with a focus on the hematopoietic system and outline common mis-regulations of their function associated with cancer and leukemia. Most cancers are aging-associated diseases. We will thus also discuss changes in the function and outcome of these checkpoints upon aging of stem and progenitor cells.  相似文献   

15.
Summary The metabolic processes leading to meiosis inSabellaria spinulosa were investigated with cytochemical methods (PAS-reaction for polysaccharides, and basic dyes in combination with ribonuclease applied for the detection of ribonucleic acid) and the use of specific inhibitors. Before the beginning of meiotic prophase, polysaccharides and later ribonucleic acid appear in the nuclear sap and become incorporated into the spindle. 2,4-dinitrophenol and NaN3, which inhibit the formation of energy-rich phosphates, prevent the accumulation of polysaccharides and RNA in the nucleus and the formation of the meiotic spindle. KCN and mono-iodoacetic acid are without influence on polysaccharide and RNA metabolism of the nucleus. The first and second meiotic division are normal, but cleavage is completely suppressed. From these results the following conclusions may be drawn: (1) the division of the nucleus is dependant on the presence of energy-rich phosphate, (2) the division occurs without respiration, and (3) respiration is important for cell division only in so far as it provides the synthesis of energy-rich phosphates.  相似文献   

16.
When cleaving eggs are treated by nocodazole the reticulum cisternae coat the centrospheres instead of the chromosomes, as normally occurs at the late anaphase. At the same time the spindle is reduced to a common mass or spindle remnant, constituted of unorientated and fragmented microtubules which embed the kinetochores, i. e. the star configuration of the chromosomes. This action is quite similar to that of chloralhydrate but is different from that of colchicine.  相似文献   

17.
We propose a nonlinear time series model where both the conditional mean and the conditional variance are asymmetric functions of past information. The model is particularly useful for analysing financial time series where it has been noted that there is an asymmetric impact of good news and bad news on volatility (risk) transmission. We introduce a coherent framework for testing asymmetries in the conditional mean and the conditional variance, separately or jointly. To this end we derive both a Wald and a Lagrange multiplier test. Some of the new asymmetric model's moment properties are investigated. Detailed empirical results are given for the daily returns of the composite index of the New York Stock Exchange. There is strong evidence of asymmetry in both the conditional mean and the conditional variance functions. In a genuine out‐of‐sample forecasting experiment the performance of the best fitted asymmetric model, having asymmetries in both conditional mean and conditional variance, is compared with an asymmetric model for the conditional mean, and with no‐change forecasts. This is done both in terms of conditional mean forecasting as well as in terms of risk forecasting. Finally, the paper presents some evidence of asymmetries in the index stock returns of the Group of Seven (G7) industrialized countries. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
Forecasts are pervasive in all areas of applications in business and daily life. Hence evaluating the accuracy of a forecast is important for both the generators and consumers of forecasts. There are two aspects in forecast evaluation: (a) measuring the accuracy of past forecasts using some summary statistics, and (b) testing the optimality properties of the forecasts through some diagnostic tests. On measuring the accuracy of a past forecast, this paper illustrates that the summary statistics used should match the loss function that was used to generate the forecast. If there is strong evidence that an asymmetric loss function has been used in the generation of a forecast, then a summary statistic that corresponds to that asymmetric loss function should be used in assessing the accuracy of the forecast instead of the popular root mean square error or mean absolute error. On testing the optimality of the forecasts, it is demonstrated how the quantile regressions set in the prediction–realization framework of Mincer and Zarnowitz (in J. Mincer (Ed.), Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance (pp. 14–20), 1969) can be used to recover the unknown parameter that controls the potentially asymmetric loss function used in generating the past forecasts. Finally, the prediction–realization framework is applied to the Federal Reserve's economic growth forecast and forecast sharing in a PC manufacturing supply chain. It is found that the Federal Reserve values overprediction approximately 1.5 times more costly than underprediction. It is also found that the PC manufacturer weighs positive forecast errors (under forecasts) about four times as costly as negative forecast errors (over forecasts).  相似文献   

19.
Genomic stability requires error-free chromosome segregation during mitosis. Chromosome congression to the spindle equator precedes chromosome segregation in anaphase and is a hallmark of metazoan mitosis. Here we review the current knowledge and concepts on the processes that underlie chromosome congression, including initial attachment to spindle microtubules, biorientation, and movements, from the perspective of the kinetochore.  相似文献   

20.
Summary GABA, when applied locally, acted similarly on both primary and mirror cortical focus: the negative component of the spike discharge was suppressed or inverted in polarity, whereas the late slow negative wave was strongly potentiated. Recordings from deep cortical layers suggested a different origin of these 2 surface-negative components of focal discharges.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号