首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
虚拟模型控制广泛用于四足机器人的运动控制器设计中. 提出了一种分数阶虚拟模型控制器,在保证四足机器人柔性触地的同时,提高四足机器人小跑运动中单腿轨迹跟踪的精确性和鲁棒性. 介绍了关节液压缸力控制系统的频域建模过程及基于非线性寻优法的单腿虚拟模型控制器的参数整定,并通过实验对比了分数阶虚拟模型控制和传统虚拟模型控制在四足机器人小跑运动中单腿的控制效果,证明了分数阶虚拟模型控制对单腿轨迹跟踪性能的改善作用.   相似文献   

2.
为提高四足机器人在对角小跑(Trot)步态下的行走稳定性,并减小控制策略的复杂程度,提出了一种基于虚拟模型的四足机器人控制策略;将四足机器人控制策略分为支撑相及机身运动控制、摆动腿相运动控制及足端轨迹规划三部分;在Trot步态下行走时支撑相中存在的前后对角支撑足,在分析四足机器人支撑足受力情况后,并添加相关的约束条件,实现了四足机器人足端力及力矩可控;并通过在四足机器人机身的质心位置添加相应的虚拟弹簧阻尼组件,实现了四足机器人姿态和高度控制;通过在摆动腿足端实际位置与环境之间添加虚拟的弹簧阻尼组件并结合足端轨迹规划实现了四足机器人柔顺行走以及足端轨迹跟踪精确性;通过Matlab和CoppeliaSim建立联合对比仿真验证了控制策略的有效性和优越性。  相似文献   

3.
基于虚拟模型的四足机器人直觉控制   总被引:2,自引:0,他引:2  
JTUWM-Ⅲ四足机器人在关节上设置驱动器,高层的步行任务转化为低层关节空间的驱动控制,它是非直觉的。针对这一问题,以虚拟驱动器模拟实际关节转矩,基于此虚拟驱动器的模型,将高层的步行任务转化为底层的关系转矩控制,凭直觉连续设置虚拟力使机器人不断从平衡状态进入不平衡状态,进而由虚拟模型得到期望转矩,驱动机器人进入新的平衡状态完成步行。  相似文献   

4.
为了提高四足机器人在包含坡面和障碍物等复杂地形中的运动能力与环境自适应能力,在对四足机器人基本步态研究的基础上,利用生物节律运动和反射控制机理,对四足机器人的适应性行走控制模型进行了研究.建立了适用于四足机器人坡面运动以及越障运动的前庭反射和屈肌反射数学模型,根据该数学模型构建的生物反射控制器与机器人膝、髋关节CPG控制网络有机融合,构成了协调性好、整体性高的控制系统.通过Adams/Matlab联合仿真,验证了所提出控制模型的可行性与有效性.该模型能够有效地使前膝后肘式四足机器人流畅、平稳地完成上下坡运动,并具备自适应越障运动能力.  相似文献   

5.
针对四足机器人奔跑运动对腿结构高缓冲性能的要求,基于动物狗前腿的骨骼-肌肉生物力学特性,设计了一种奔跑四足机器人的腿结构.该腿结构有3个关节,具有3个自由度,髋关节、膝关节具有主动的俯仰自由度,踝关节具有被动的俯仰自由度.对该腿结构进行了动力学分析和刚度特性分析,并对机器人进行了bound步态的仿真.仿真结果表明,该腿结构能够实现四足机器人快速、稳定地奔跑,关节驱动力矩较小,验证了该腿结构实现四足机器人bound步态奔跑的可行性和合理性.  相似文献   

6.
针对液压驱动足式机器人竖直跳跃控制,提出一种基于SLIP竖直跳跃动力学模型实现液压驱动机器人竖直跳跃的控制策略。分析SLIP竖直跳跃动力学模型并求解其动力学微分方程得到质心运动轨迹,将关节型单腿机器人竖直跳跃髋部的运动轨迹映射到SLIP模型质心的运动轨迹,通过机器人运动学逆解得到机器人关节运动轨迹,以此驱动关节运动;同时建立关节型单腿机器人竖直跳跃动力学方程和液压驱动执行器动力学方程,应用MATLAB/Simulink软件进行动态跳跃控制仿真并进行样机试验。研究结果表明:基于SLIP竖直跳跃动力学模型的控制策略可实现液压驱动单腿机器人持续稳定的竖直跳跃,为足式机器人动态步态行走控制研究提供参考。  相似文献   

7.
四足机器人对角小跑直线步行的虚拟模型   总被引:4,自引:0,他引:4  
提出用虚拟模型控制技术实现四足步行机器人的对角小跑直线步行,在阐述虚拟模型概念的基础上,推导了JTUWM-Ⅲ四足机器人对角支撑和四足支撑的虚拟模型,实现了对小角小跑步态,机体步行速度为0.2km/h。  相似文献   

8.
基于弹簧负载倒立摆的足式机器人单腿等效模型是移动机器人领域重要的步态分析模型. 液压足式机器人由于其超强的负载能力以及高动态性能而越来越受到重视. 液压驱动的弹簧负载倒立摆模型作为液压足式机器人关节型机械腿的单腿等效模型,对于液压足式机器人的步态研究具有重要的意义. 本文考虑液压驱动的弹簧负载倒立摆单腿等效模型的单自由度弹跳问题,提出了一种基于主动柔顺的弹跳控制方法,依次对单腿等效模型着地相下降阶段和着地相上升阶段进行独立控制,仿真分析了相关系统参数对弹跳性能的影响,实际弹跳实验表明本文提出的方法能够减小着地冲击力,同时能够对弹跳高度进行有效控制.   相似文献   

9.
结合并联腿步行机器人和可重构机器人的优点,设计了一种新型的助老助残四足/两足可重构并联腿步行机器人,进行了该机器人的构型设计。以四足并联腿步行机器人为研究对象,根据步行机器人整机的结构特征和基本并联腿的运动特征,将整机的运动学问题转化为单个并联腿的运动学问题,建立了机器人整机系统的完整的运动学模型,进行了机器人在爬行步态下的仿真分析,得出了驱动器杆长的仿真曲线。该项研究为四足并联腿步行机器人整机的动力学分析和控制奠定了一定的基础。  相似文献   

10.
基于动力学模型的四足机器人运动控制,难以实现适应非结构化环境的稳定步行.开展了基于中枢模式发生器控制策略的四足机器人对角小跑步态仿真分析与实验研究.采用正弦函数规划了四足机器人的足端期望轨迹,采用D-H坐标法进行四足机器人腿摆动相和支撑相的运动学分析,由运动学逆解获得四足机器人足端期望轨迹和关节角位移间的关系.设计了中枢模式发生器的神经振荡器控制器,建立由兴奋神经元和抑制神经元组成的振荡单元模型,输出振荡波控制四足机器人髋关节和膝关节.通过开展四足机器人对角小跑步态步行仿真和实验研究,验证了理论分析和控制方法的正确性,为提高四足机器人机动性奠定基础.  相似文献   

11.
六足机器人的多关节、高耦合、非线性的机械结构使其运动控制成为机器人研究领域一大难题。针对上述问题,本文在Matsuoka振荡器的基础上创新性提出带力反馈神经元的三神经元相互反馈的CPG模型作为六足机器人的运动控制器。在对六足机器人进行运动学建模、运动学分析等数学分析的基础上对三神经元CPG模型建模分析并得到振荡周期波形满足六足机器人节律运动的要求。对力反馈模型进行实物设计并建立对应反馈模型,根据反馈信息对六足机器人运动节律、关节信息等实时调节。最后通过仿真及实物实验证明该CPG模型能够满足维持六足机器人稳定运动的要求,在复杂未知环境中也能够保持机器人的稳定性与适应性,实现复杂环境下的自适应运动。  相似文献   

12.
为解决四足机器人驱动单元功率密度低的问题,借助串联弹性机构的能量放大作用,设计出一款具有串联弹性、适用于四足机器人腿部构型的电驱动柔性关节,并据此柔性关节设计制作了具有柔性特性的四足机器人单腿样机.为研究柔性机械腿能量运用情况,提出一种简化的柔性单腿跳跃模型,对单次跳跃过程中从屈膝静止到跳离地面过程建立了运动学微分方程,应用解析法进行求解,分析了串联弹性能量放大作用在足式机器人中的应用,同时通过分析驱动单元功率曲线,揭示了能量放大实现机理.利用足式机器人单腿垂直跳跃实验平台完成单腿样机跳跃过程的初步实验,验证了柔性在四足机械腿中的能量放大作用.  相似文献   

13.
偏心轮腿六足机器人四足步态规划   总被引:1,自引:1,他引:0  
提出了一种适用于偏心轮腿六足机器人的直行四足步态规划.以一个运动周期为例,分析了偏心轮腿六足机器人直行过程中5个阶段的运动状态,以及每个运动状态中偏心轮腿步态的参数变化并用状态矩阵加以描述.将该步态用于所设计的偏心轮腿六足机器人,在驱动电机的控制下,能保证机器人的直行前进.  相似文献   

14.
提出一种基于图像的运动序列生成技术 ,此项技术不需要已知目标物体及所在背景的 CAD模型 ,也不需要对摄像机进行标定。在样本图集的基础上 ,通过 Karhunen- L o-eve(K- L)变换得到图像的特征表示。建立了机器人关节角与图像特征之间的非线性关系。在机器人关节空间进行轨迹规划 ,最后生成关于机器人虚拟运动的图像序列。以 UP6机器人为目标物体 ,进行虚拟运动实验 ,得到 UP6机器人的虚拟运动 ,结果表明该技术方便有效  相似文献   

15.
仿生四足机器人嵌入式控制系统设计与实验分析   总被引:1,自引:0,他引:1  
仿生设计一款小型的单腿具有四自由度的仿生四足机器人,开展机器人运动学正逆解分析。基于ARM Cortex-M3内核的嵌入式芯片建立了机器人控制系统。该控制系统以半双工串口通讯方式向各个关节数字舵机发送步态数据包,控制舵机转动角度值,从而精确地控制四足机器人的稳定协调运动。实验结果表明:机器人在行走过程中机身的横滚角、俯仰角、偏航角(RPY角)变化较小,运动较为平稳,验证了机器人运动学正逆解准确性;以及所设计的嵌入式控制系统能较为精确地控制四足机器人运动,实现稳定的四足行走。该小型的嵌入式控制系统具有运算处理速度快、外设可扩展性和存储能力强的优点,满足仿生四足机器人智能算法、低功耗运动要求。  相似文献   

16.
四足变结构机器人的运动学分析   总被引:1,自引:0,他引:1  
对一种新型的四足变结构机器人进行了运动学分析.首先建模分析了单条腿的运动速度;然后综合考虑机器人车身本体的运动和变形以及四条腿的运动状态,对机器人整体进行了运动学分析,提出并建立了机器人的全局速度方程;最后将全局速度方程应用到机器人的速度分解控制中,使该控制方法的应用领域从串联机器人扩展到多足移动(串并混联)机器人,并以变结构四足机器人的车身原地收缩运动为例,验证了这种方法的可行性.  相似文献   

17.
液压四足机器人髋关节由伺服阀控缸系统构成,是机械腿的关键组成部分.它的控制性能直接影响着机械腿甚至机器人的运动控制精度.因为髋关节工作情况的复杂性和阀控缸系统自身的非线性,使得传统控制算法无法满足机器人运动性能指标的要求.由此,本文对液压四足机器人髋关节伺服阀控缸系统的控制方法进行了研究.首先通过对髋关节工作条件的分析完成了伺服阀控缸的数学建模,然后基于鲁棒自适应动态面的控制算法设计了伺服阀控缸系统的控制器,并从李雅普诺夫稳定判据的角度证明了系统的稳定性.最后通过Matlab与AMESim的联合仿真,对鲁棒自适应动态面与传统PID及普通动态面的控制效果做出对比,证明了所研究算法的有效性.   相似文献   

18.
六足机器人的多关节、高耦合、非线性的机械结构使其运动控制成为机器人研究领域一大难题。针对上述问题,在Matsuoka振荡器的基础上,创新性提出带力反馈神经元的三神经元相互反馈的中枢模式发生器(CPG)模型作为六足机器人的运动控制器。在对六足机器人进行运动学建模、运动学分析等数学分析的基础上,对三神经元CPG模型建模分析;并得到振荡周期波形满足六足机器人节律运动的要求。对力反馈模型进行实物设计;并建立对应反馈模型。根据反馈信息对六足机器人运动节律、关节信息等实时调节。最后通过仿真及实物实验证明,该CPG模型能够满足维持六足机器人稳定运动的要求,在复杂、未知环境中,也能够保持机器人的稳定性与适应性,实现复杂环境下的自适应运动。  相似文献   

19.
为实现四足机器人在平面上的稳定平顺的转向与斜向运动,提出了一种基于参数化坐标变换矩阵的规划方法. 通过D-H法建立了四足机器人的运动学模型,分别求得机器人机体坐标系在两种运动中的参数化坐标变换矩阵,并通过参数的调整来完成机器人运动的规划. 最后对四足机器人在平面上的转向与斜向运动进行了仿真,仿真结果表明,该方法能够实现四足机器人在平面上的连续、平稳的转向与斜向运动.   相似文献   

20.
针对四足机器人在常规对角小跑步态中绕对角支撑线的翻转力矩会导致机器人失衡问题,在运动学建模和失衡原因分析的基础上提出了2种新颖的对角小跑步态规划方法:叠加腿部侧摆运动的对角小跑步态和叠加脊柱偏航摆动的对角小跑步态.前者引入腿的侧摆关节的运动调节支撑腿足端轨迹,后者增加脊柱偏航关节的运动调节机器人的重心并保持足端轨迹不变,这2种方法均使机器人重心在整个对角小跑步态周期位于对角支撑线上.仿真结果显示,相比于常规对角小跑步态和足端轨迹后移的对角小跑步态,提出的对角小跑步态规划方法显著提高了机器人运动的稳定性.此外,提出的规划方法在存在模型误差时具有鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号