首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用高温固相法,在900~1 300℃范围内煅烧3h,合成Eu~(3+)和Tb~(3+)离子掺杂的硼酸铝系列荧光粉。用X射线粉末衍射仪(XRD)和荧光分光光度计对合成样品进行物相结构和荧光性能表征。结果表明,在合成温度范围内,可得到两种不同结构的稀土离子掺杂硼酸铝荧光粉Al18-xMxB4O33和Al4-xMxB2O9(M=Eu、Tb),物相结构和稀土离子的掺杂浓度对样品的发光性能均有显著影响。  相似文献   

2.
采用高温固相法合成一系列不同摩尔分数Mn~(2+)掺杂的Ca_9Sr(PO_4)_6Cl_2荧光粉,并利用X射线粉末衍射及荧光光谱手段对所制备样品的结构及其发光特性进行表征,在波长为412nm蓝光激发下,Ca_9Sr(PO_4)_6Cl_2:Mn~(2+)荧光粉产生中心波长位于643nm的红光宽带发射,其色坐标为(0.68,0.32)。研究发现,Mn~(2+)掺杂摩尔分数为15%时获得的Ca_9Sr(PO_4)_6Cl_2:Mn~(2+)荧光粉表现出最佳发光特性。利用Van Uitert理论模型分析发光强度与掺杂浓度之间的关系,表明Ca_9Sr(PO_4)_6Cl_2:Mn~(2+)荧光粉中Mn~(2+)浓度猝灭的机制为电偶极-电偶极相互作用。新型Ca_9Sr(PO_4)_6Cl_2:Mn~(2+)荧光粉可望发展成一种具有良好应用前景的白光LED用红色荧光粉材料。  相似文献   

3.
(Ce0.67Tb0.33)MgAl11O19荧光粉的燃烧合成及发光性能   总被引:1,自引:0,他引:1  
用燃烧法在较低温度下(600℃)合成了(Ce0.67Tb0.33)MgAl11O19绿色荧光粉,利用XRD、SEM等实验技术对粉体的结构、形貌及发光性能进行了研究。结果表明:采用燃烧法合成的(Ce0.67Tb0.33)MgAl11O19荧光粉粉体结晶良好、晶相单一、颗粒度较小。278nm紫外线激发,发绿色光,发射主峰在543nm处。  相似文献   

4.
采用共沉淀法合成了钙钛矿型复合氧化物La0.5Sr0.5MnO3.考察了共沉淀pH,煅烧温度,煅烧时间,分散剂PEG-4000等因素对产物性能的影响,并采用XRD,BET,SEM,H2-TPR等测试手段对所得产物进行了表征.结果表明,当共沉淀pH为10.5,煅烧温度850℃,煅烧时间4h时,得到了纯相的钙钛矿型La0.5Sr0.5MnO3;在合成中添加5%PEG-4000,可以有效的降低样品颗粒团聚,比表面积达23.44m2.g-1,并显著的增强了其氧化性能及结构稳定性.  相似文献   

5.
采用高温固相法合成了Na_3Ce_(1-x)(PO_4)_2∶xDy~(3+)系列白色荧光粉。利用X射线粉末衍射、荧光光谱和荧光寿命技术对样品进行了表征。实验结果表明,在313 nm紫外光激发下,Na_3Ce(PO_4)_2:∶Dy~(3+)显示了3个发射带:363 nm的宽带发射可归属为Ce~(3+)离子的4f~05d~1→4f~1跃迁;483 nm和575 nm的2个窄带分别来自于Dy~(3+)的~4F_(9/2)→~6H_(15/2)和~4F_(9/2)→~6H_(13/2)跃迁。Na_3Ce_(1-x)(PO_4)_2∶xDy~(3+)(x=0.005~0.12)系列样品的发射峰形状并未随掺杂剂浓度的变化而改变。其强度在Dy~(3+)摩尔浓度等于0.01时达到最大值,进一步增加Dy~(3+)浓度将导致浓度猝灭现象发生。样品的荧光寿命随着Dy~(3+)掺杂浓度的增大而逐渐减小,表明Dy~(3+)离子之间存在能量传递现象。Na_3Ce(PO_4)_2∶Dy~(3+)荧光粉的色坐标为(0.342 9, 0.318 3),位于白光区域,是潜在的白光LED用荧光粉材料。  相似文献   

6.
(Ce,Tb) MgAl11O19绿色荧光粉的发光性质和能量传递   总被引:2,自引:0,他引:2  
在还原气氛下,采用高温固相法合成了(Ce, Tb) MgAl11O19绿色荧光粉,研究了(Ce, Tb) MgAl11O19中Ce3 与Tb3 发光性质和两者之间的能量传递现象.Ce3 的发射光谱表明Ce3 由于5d轨道裸露在外壳层,很容易受到周围晶体场的影响,使得5d轨道不再是分离的能级,几乎成为能带,从而造成了Ce3 的宽带发射而不是线谱.Ce3 的发射光谱与Tb3 的激发光谱在350-450nm范围内有很大的光谱重叠,从而为两者之间的能量传递提供了良好的条件.Ce3 与Tb3 之间的能量传递方式主要以共振传递为主.  相似文献   

7.
助熔剂法合成Gd2O2S:Tb荧光粉   总被引:3,自引:0,他引:3  
采用共沉淀法制备前驱体,再加入助熔剂煅烧合成Gd2O2S:Tb荧光粉,并对制备的荧光粉样品的晶体结构及发光性能进行了系统研究.结果表明:助熔剂的选择对Gd2O2S:Tb荧光粉合成影响显著;当Li2CO3与Li3PO4添加量的摩尔比为2:1时发光亮度最大,且颗粒分布较均匀;当助熔剂的质量分数为0.35时发光性能最好.  相似文献   

8.
采用共沉淀法制备前驱体,再加入助熔剂煅烧合成Gd2O2S∶Tb荧光粉,并对制备的荧光粉样品的晶体结构及发光性能进行了系统研究。结果表明:助熔剂的选择对Gd2O2S∶Tb荧光粉合成影响显著;当L i2CO3与L i3PO4添加量的摩尔比为2∶1时发光亮度最大,且颗粒分布较均匀;当助熔剂的质量分数为0.35时发光性能最好。  相似文献   

9.
通过替代阴离子基团设计和合成系列发光颜色可调的硼磷酸盐Ba_2Ca(PO_4)_(2-x)(BO_3)_x:Eu~(2+)(0≤x≤0.25)荧光粉。利用X射线衍射(XRD)、瞬态和稳态光谱、荧光量子效率多种手段对系列荧光粉的物相结构和发光特性进行了详细研究。XRD结果证实了BO_3基团部分替换基质Ba_2Ca(PO_4)_2中PO_4单元没有显著改变基质的晶体结构框架。三角平面结构(BO_3)替代四面体结构(PO_4)使得基质晶胞发生了畸变,增加Eu~(2+)离子5d能级劈裂,使得荧光粉的发射峰在紫外光波长365 nm激发下出现连续红移,发射主峰从464 nm(x=0)红移至490 nm(x=0.25),实现了发光颜色从青光至黄绿光的连续调控。此外,通过荧光寿命和激发光谱研究了BO_3替代PO_4对样品中Eu~(2+)中心的局部结构的影响。  相似文献   

10.
本文以硅胶G为吸附剂,选用二十三种不同的展开溶剂,对铀(Ⅵ)、钍、锆和稀土—三氟乙酰丙酮螯合物的薄层层析行为进行了系统的研究。在适当的PH值介质中(一般PH 4~6)合成了金属—TFA螯合物;并用环己烷进行革取。实验结果表明:以石油醚—乙酰丙酮(2:1),环己烷—乙酰丙酮(4:1),二氯甲烷—乙酰丙酮(6:1)为展开剂时,能成功地分离Ce(TFA)_3—La(TFA)_3,Ce(TFA)_3—Pr(TFA)_3,Th(TFA)_4—Ce(TFA)_3—Y(TFA)_3,Sc(TFA)_3—Ce(TFA)_3—La(TFA)_3,Th(TFA)_4—UO_2(TFA)_2—La(TFA)_3,Sc(TFA)_3—Th(TFA)_4—Ce(TFA)_3—Zr(TFA)_4和Sc(TFA)_3—Th(TFA)_4—Ce(TFA)_4—Ho(TFA)_3等多种混合物。  相似文献   

11.
采用凝胶-燃烧法合成了CaMoO_4:Tb(3+)绿色荧光粉,借助X射线粉末衍射仪(XRD)、场发射扫描电镜(FE-SEM)、荧光光谱仪(PL)对样品的晶体结构、形貌、发光特性等进行分析,结果表明:所得CaMoO_4:Tb(3+)绿色荧光粉,借助X射线粉末衍射仪(XRD)、场发射扫描电镜(FE-SEM)、荧光光谱仪(PL)对样品的晶体结构、形貌、发光特性等进行分析,结果表明:所得CaMoO_4:Tb(3+)样品为四方白钨矿型结构,平均粒径为450 nm左右;CaMoO_4:Tb(3+)样品为四方白钨矿型结构,平均粒径为450 nm左右;CaMoO_4:Tb(3+)荧光粉在276 nm紫外光激发下发射绿光,色度坐标为(0.2741,0.5683);Tb(3+)荧光粉在276 nm紫外光激发下发射绿光,色度坐标为(0.2741,0.5683);Tb(3+)最佳掺杂量为x=0.025 mol,柠檬酸的最佳加入量为a=n(NO(3+)最佳掺杂量为x=0.025 mol,柠檬酸的最佳加入量为a=n(NO(3-))/n(C_6H_8O_7)=3.5,最佳点火温度为650℃。  相似文献   

12.
以稀土氧化物为原料,采用简单的低温溶剂热法成功制备了YPO4Tb3+荧光粉.分别采用XRD和荧光分光光度计对样品的物相结构和荧光性质进行了分析.探讨了Tb3+的摩尔掺杂浓度,反应体系的温度及p H来对YPO4:Tb3+荧光材料的荧光性能的影响.实验结果表明,样品均为纯四方晶相的YPO4.Tb3+的摩尔掺杂浓度为5%,p H=1的酸性体系下,160℃反应24 h合成的样品荧光效果最好,544nm处表现出Tb3+的特征绿光发光.  相似文献   

13.
合成了4种N,N-乙基,苯基-N’-苯基-1,1’-联萘-2,2’-二(氧杂乙酰胺)(L)稀土配合物.通过元素分析、红外光谱、紫外光谱、差热-热重和摩尔电导率的分析,确定配合物的组成为RE(pic)3L[RE=La(Ⅲ),Eu(Ⅲ),Tb(Ⅲ),Ce(Ⅲ)],稀土离子的配位数为10,其在CH3OH溶液中属于非电解质.该系列配合物的荧光光谱表明,Eu(Ⅲ)配合物的荧光强度远大于Tb(Ⅲ)配合物,说明配体L的三重态能级与Eu3+的激发态能级匹配较好.通过紫外光谱、荧光光谱和黏度法对配合物与ct-DNA之间的作用方式进行了初步研究,结果表明,配合物与ct-DNA之间存在着插入作用.  相似文献   

14.
以硫化锌为基质,Ce和Tb为激活剂,在1100℃合成了发绿光且余辉时间达5min以上的光致发光材料。研究了样品的荧光光谱、物相及形貌,结果表明:在高温合成过程中,硫化锌从闪锌矿结构(β-ZnS)转变为纤锌矿结构(α—ZnS),在一定量的硼酸存在时,这种转化很完全,且较好地抑制了氧化锌的生成,Ce和Tb进入硫化锌晶格,Ce敏化Tb发光。  相似文献   

15.
采用共沉淀法合成了LaPO4:Ce,Tb纳米棒,利用XRD和SEM分别测试了样品的物相结构及形貌,用荧光光谱仪测试了样品的激发光谱和发射光谱,研究了不同Ce^3+含量对LaPO4:Cex,Tb0.06纳米棒发光性能的影响。结果表明:LaPO4:Ce,Tb样品为独居石结构,属于单斜相;样品呈棒状,其长度为100~1000nm,宽度为11~82nm;LaPO4:Ce,Tb纳米棒的最强发射波长为544nm。  相似文献   

16.
采用高温固相法合成一种黄色荧光粉Ca_8MgLu(PO_4)_7:Dy~(3+),通过X线衍射(XRD)荧光光谱(PLE,PL)和荧光寿命研究Ca_8MgLu(PO_4)_7:Dy~(3+)的发光特性.在350 nm近紫外光激发下,荧光粉呈黄光发射,蓝光发射峰位于480 nm处(由~4F_(9/2)→~6H_(15/2)跃迁产生),黄光发射峰位于572 nm处(由~4F_(9/2)→~6H_(13/2)跃迁产生),以黄光发射为最强.监测572 nm最强发射峰,激发光谱覆盖300 500 nm,主激发峰位于350 nm. Ca_8MgLu(PO_4)_7:Dy~(3+)的热猝灭性能良好:在150℃下的发光强度积分是室温25℃的87. 37%.研究结果表明Ca_8MgLu(PO_4)_7:Dy~(3+)荧光粉材料有潜力应用于发光二极管(LED)中.  相似文献   

17.
采用化学共沉淀法在不同温度下制备了YPO_4∶Re(Re=Eu,Gd)荧光粉;通过X射线粉末衍射分析显示合成的荧光粉为四方磷钇矿结构;通过扫描电子显微镜(SEM)观察了荧光粉的形貌,晶粒大小在0.2~0.4um之间,XRPD和SEM结果表明,YPO_4∶Re(Re=Eu,Gd)的最佳烧结温度为1000℃;荧光光谱测试显示样品有3个主要发射峰,最强峰出现在595nm处。  相似文献   

18.
采用柠檬酸燃烧法制备稀土Tb3+掺杂的La2O3纳米晶,并用X射线衍射仪(XRD)、透射电子显微镜(TEM)和荧光分光光度计对La2O3∶Tb3+纳米晶的结构、形貌和发光性能进行分析.结果表明,不同柠檬酸与稀土离子配比(C/M)制备的样品经800℃退火后均得到结晶性良好的六方相La2O3∶Tb3+纳米晶,晶粒尺寸约为20nm.纳米晶的三维荧光光谱图显示,Tb3+在基质中的最佳激发波长为280nm,在280nm光的激发下,La2O3∶Tb3+纳米晶产生Tb3+的特征发射峰,归属于5D4-7FJ(J=6,5,4)跃迁,主发射峰位置均在543nm处(5D4-7F5跃迁).同时研究了柠檬酸与稀土离子配比(C/M)对结晶度、发光性质等的影响.  相似文献   

19.
采用超声法在不同磷源条件下制备了YPO4︰(Ce,Tb)晶体,并对样品进行X射线衍射(XRD)、扫描电子显微镜(SEM)、红外光谱(IR)、荧光光谱(PL)表征与分析。实验结果表明YPO4︰(Ce,Tb)在320nm的激发光下,表现出Tb3+的特征峰:5 D4-7F6(495nm)、5 D4-7F5(549nm)、5 D4-7F4(589nm)和5 D4-7F3(640nm),其能量采用Ce3+→Y3+→Tb3+的传递方式;磷源不同所得晶体的结构与形貌不同,可改变晶体的发光性能,有助于高性能稀土磷酸盐荧光材料的研制。  相似文献   

20.
稀土掺杂纳米TiO2光催化降解氯胺磷   总被引:4,自引:0,他引:4  
采用溶胶一凝胶法制备稀土掺杂纳米TiO2光催化剂,利用x射线衍射仪和FE-SEM等对样品的结构和形貌进行表征.以有机磷农药氯胺磷为光催化降解对象,研究稀土掺杂浓度、热处理温度、溶液初始浓度及溶液的pH值等因素对光催化降解效果的影响.结果表明:稀土掺杂可以抑制TiO2锐钛矿相向金红石相的转变,抑制纳米晶体的生长,从而提高光催化活性;La3+最佳掺杂量为0.5%,Ce3+最佳掺杂量为1%,合适的热处理温度为500℃,氯胺磷溶液初始质量浓度为20 mg/L,酸性或碱性条件下的降解效果比中性条件的好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号