首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
为求变分数阶微分方程的数值解,应用Bernstein多项式求解一类线性、非线性变分数阶微分方程.结合Bernstein多项式,求得3种不同类型的微分算子矩阵.通过微分算子矩阵,将原方程转化一系列矩阵的乘积.最后离散变量,将矩阵的乘积转化为该线性或者非线性方程组,通过求解方程组,从而得到数值解.数值算例验证了本方法的高度可行性和准确性.  相似文献   

2.
为了求解变系数分数阶Fredholm微积分方程的数值解,运用Caputo分数阶导数及性质,得出了由Legendre多项式构造的任意分数阶微分算子Dα,再利用区间[0,1]上Legendre级数的逼近,将变系数的分数阶微积分方程用矩阵形式表示,采用配点法,得到相应的代数方程组,对原微积分方程的数值解进行了研究并给出了数值算例,验证了Legendre多项式方法的可行性和有效性。  相似文献   

3.
先利用Legendre小波的分数阶积分算子矩阵将非线性分数阶Volterra积分微分方程转化为非线性代数方程组, 再通过数值求解方程组得到原方程的数值解, 证明了误差边界值, 并用算例验证了该方法的有效性和精确性.  相似文献   

4.
文章应用Bernstein多项式求解一类变分数阶微分方程,结合Bernstein多项式的一阶微分算子矩阵、分数阶微分算子矩阵,通过离散变量,将原方程转化为线性方程组,通过解该线性方程组,进而得到数值解。数值算例验证了该方法的高度可行性和准确性。  相似文献   

5.
为了求解非线性分数阶Fredholm积分微分方程的数值解,通过Legendre多项式,得出了Legendre小波,并由block pulse函数给出了Legendre小波的分数阶积分算子矩阵,利用block pulse函数与Legendre小波的积分算子矩阵的性质将非线性分数阶Fredholm积分微分方程转化为非线性代数方程组,进而可以求得原积分微分方程的数值解.结果表明:随着点数的增多,数值解的精度也越来越高.文中给出的算例表明了该方法的可行性和有效性.  相似文献   

6.
利用B样条小波函数数值求解非线性分数阶第2类Fredholm积分方程,将具有紧支集的线性半正交B样条尺度函数和小波函数一起应用于数值求解非线性分数阶第2类Fredholm积分方程中.这种方法将非线性分数阶Fredholm积分方程转化为非线性代数方程组,再通过数值求解方程组得到原方程的数值解, 证明了误差边界值,数值算例验证了本方法的有效性和准确性.  相似文献   

7.
针对求解分数阶微分方程数值解和所得结果误差大小问题.采用Haar小波分数阶积分算子矩阵方法,得到一类变系数分数阶微分方程数值解.利用所得算子矩阵将原分数阶微分方程转化为代数方程组,进而便于编程求解.讨论算法的误差分析,给出相应的误差估计式,并证明该算法是收敛的.结果表明:随着点数的增多,所得数值解与精确解的误差也越来越小.最后,数值算例验证了方法的有效性以及理论分析的正确性.  相似文献   

8.
用Jacobi谱配置方法, 数值求解一类非线性时间分数阶导数为Caputo导数的Klein-Gordon方程. 先用Caputo分数阶导数和Riemann-Liouville分数阶积分的关系, 将分数阶Klein-Gordon方程转化为在时间上带奇异核的积分微分方程, 再在时间和空间上采用Jacobi谱配置法, 并用高斯积分公式逼近积分项, 使方程在配置点上 成立, 从而求得其数值解. 数值算例结果表明, 该方法所得数值解很好地逼近了精确解.  相似文献   

9.
建立了求解梁振动方程数值解的移位Legendre小波配置法。利用移位的Legendre多项式,推导出Riemann-Liouville意义下移位Legendre小波函数的一般分数阶积分公式。利用分数积分公式和二维移位Legendre小波配置法,将梁振动方程求解问题转化为代数方程组求解。数值算例表明该方法具有较高的精度。  相似文献   

10.
为了求分数阶变系数且带有弱奇异积分核Volterra-Fredholm积分微分方程的数值解,本文提出了Legendre多项式算子矩阵法,利用Legendre多项式的定义及其性质给出了分数阶微分算子矩阵,同时也给出了任意阶弱奇异积分的近似求积公式.通过简化所求分数阶积分微分方程,并离散化简后的方程,可将原问题转换为求代数方程组的解.收敛性分析证明了本文方法是收敛的,数值算例验证了该方法的有效性.  相似文献   

11.
基于求分数阶非线性偏微分方程近似解的迭代思想,通过将Laplace变换与同伦摄动法相结合,借助Adomian多项式展开和对非线性项进行修正,构造出合乎模型的近似解标准迭代式.研究一类广义不稳定时空分数阶薛定谔方程,得到该方程的各级近似解表达式,这些解在极限情形下可转化为精确解,通过误差分析及数值模拟将两者进行比较,发现其实部、虚部与模之间接近程度良好,结果表明该近似算法在求解常系数及变系数时空分数阶非线性薛定谔方程时规范有效.  相似文献   

12.
通过Adomian分解法求解非线性分数阶Volterra积分方程组的数值解.将多元Adomian多项式与分数阶积分定义有效结合,得到了Adomian级数解;结合Laplace变换讨论级数解的收敛性,证明了所得级数解收敛于精确解,并给出最大绝对截断误差.数值算例表明,该方法可行、有效.  相似文献   

13.
小波方法求一类变系数分数阶微分方程数值解   总被引:1,自引:0,他引:1  
为了解决分数阶微分方程数值解的问题,采用Haar小波算子矩阵的方法,研究了一类变系数分数阶微分方程的数值解.将Haar小波与算子矩阵思想有效结合,得到了Haar小波的分数阶微分算子矩阵,并对分数阶微分方程的变系数进行恰当的离散.把变系数分数阶微分方程转化为线性代数方程组,使得计算更简便,同时证明上述算法的收敛性.最后给出数值算例验证了该方法的可行性和有效性.数值计算结果表明:随着取点数的增多,数值解与精确解的近似度越来越高.  相似文献   

14.
针对空间分数阶Klein-Gordon方程,提出了一种有效的数值算法.该算法的特点是时间用有限差分,空间用移位Legendre正交多项式来逼近,并将该算法用于线性和非线性的空间分数阶Klein-Gordon方程求解中.数值算例表明,该算法简单,数值精度高,是一种高效的数值求解方法.  相似文献   

15.
利用改进的分数阶辅助方程方法求解具有修正的Riemann-Liouville分数阶导数的非线性发展方程组.将该方法应用到空间-时间分数阶Broer-Kaup方程组和空间-时间分数阶长水波近似方程组,并通过符号计算得到这两类方程组的精确行波解.结果表明,该方法能十分有效和便捷地得到时间-空间分数阶非线性微分方程组的解.  相似文献   

16.
为利用Legendre小波求分数阶Bratu型积分微分方程数值解,结合Legendre小波定义及其性质,给出Legendre小波分数阶积分算子矩阵.利用所得算子矩阵,将原问题转化为求解非线性代数方程组,进而可以计算机编程求解,从而大大简化计算量.唯一性定理指出所求分数阶Bratu型积分微分方程的解唯一.结果表明:随着点数的增多,数值解精度也越来越高.数值算例验证了算法的有效性和可行性.  相似文献   

17.
为求解非线性分数阶微分方程的数值解,本文提出了一种改进的迭代方法,即将变分迭代法和Chebyshev多项式相结合应用于非线性分数阶微分方程数值解的求解,通过选取恰当的初始近似值,达到更好的近似非齐次项和非线性项的效果,进而减少计算工作.该算法可以减少计算量,提高精度并且有效处理计算复杂积分而产生的困难.数值算例验证了该方法的有效性和实用性.  相似文献   

18.
利用有理Haar小波函数数值求解分数阶第2类Fredholm积分方程,用有理Haar小波定义及性质与配置法给出有理Haar小波积分算子矩阵,将积分方程转化为代数方程组进行求解.最后通过误差分析和数值算例将分数阶积分方程的精确解和用Haar小波所得数值解进行比较,表明了该算法具有较高的精确度.  相似文献   

19.
利用未知函数的变换,将非线性演化方程转换为以新未知函数及其偏导数为变元的多项式型的非线性偏微分方程,再应用Jacobi椭圆函数展开法,求解sine-Gordon方程和Dodd-Bullough-Mikhailov方程的精确周期解,所得的周期解包含孤波解.该方法同样适用于求解其他非线性演化方程.  相似文献   

20.
现实生活中的很多物理现象只有将分数阶微积分同量子力学结合起来才能得到准确的表述,因此对薛定谔方程的研究也从整数阶扩充到了分数阶.本文利用时间分裂谱方法离散求解半经典体系中的Riesz空间分数阶非线性薛定谔方程.对该数值方法进行了稳定性分析和色散分析,并将不同网格下求得的数值解进行了对比.结果表明时间分裂谱方法具有高精度近似和无条件稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号