首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
I present in detail the case for regarding black hole thermodynamics as having a statistical-mechanical explanation in exact parallel with the statistical-mechanical explanation believed to underlie the thermodynamics of other systems. (Here I presume that black holes are indeed thermodynamic systems in the fullest sense; I review the evidence for that conclusion in the prequel to this paper.) I focus on three lines of argument: (i) zero-loop and one-loop calculations in quantum general relativity understood as a quantum field theory, using the path-integral formalism; (ii) calculations in string theory of the leading-order terms, higher-derivative corrections, and quantum corrections, in the black hole entropy formula for extremal and near-extremal black holes; (iii) recovery of the qualitative and (in some cases) quantitative structure of black hole statistical mechanics via the AdS/CFT correspondence. In each case I briefly review the content of, and arguments for, the form of quantum gravity being used (effective field theory; string theory; AdS/CFT) at a (relatively) introductory level: the paper is aimed at readers with some familiarity with thermodynamics, quantum mechanics and general relativity but does not presume advanced knowledge of quantum gravity. My conclusion is that the evidence for black hole statistical mechanics is as solid as we could reasonably expect it to be in the absence of a directly-empirically-verified theory of quantum gravity.  相似文献   

2.
Black holes have their own thermodynamics including notions of entropy and temperature and versions of the three laws. After a light introduction to black hole physics, I recollect how black hole thermodynamics evolved in the 1970s, while at the same time stressing conceptual points which were given little thought at that time, such as why the entropy should be linear in the black hole's surface area. I also review a variety of attempts made over the years to provide a statistical mechanics for black hole thermodynamics. Finally, I discuss the origin of the information bounds for ordinary systems that have arisen as applications of black hole thermodynamics.  相似文献   

3.
Black hole complementarity has been proposed as a way to reconcile the result of Hawking, that black holes evaporate, with fundamental unitary quantum theories of gravity, such as string theory. Hawking's semi-classical analysis suggests that the evaporation of black holes is a non-unitary process, yet black hole complementarity gives a perspective on the semi-classical black hole which retains unitarity. We outline this proposal and address a number of methodological criticisms that have been made with regard to this proposal.  相似文献   

4.
The microscopic explanation of the physical phenomena represented by a macroscopic theory is often cast in terms of the reduction of the latter to a more fundamental theory, which represents the same phenomena at the microscopic level, albeit in an idealized way. In particular, the reduction of thermodynamics to statistical mechanics is a much discussed case-study in philosophy of physics. Based on the Generalized Nagel–Schaffner model, the alleged reductive explanation would be accomplished if one finds a corrected version of classical thermodynamics that can be strictly derived from statistical mechanics. That is the sense in which, according to Callender (1999, 2001), one should not take thermodynamics too seriously. Arguably, the sought-after revision is given by statistical thermodynamics, intended as a macroscopic theory equipped with a probabilistic law of equilibrium fluctuations. The present paper aims to evaluate this proposal. The upshot is that, while statistical thermodynamics enables one to re-define equilibrium so as to agree with Boltzmann entropy, it does not provide a definitive solution to the problem of explaining macroscopic irreversibility from a microscopic point of view.  相似文献   

5.
In a previous paper [Hemmo, M & Shenker, O (2003). Quantum decoherence and the approach to equilibrium I. Philosophy of Science, 70, 330–358] we discussed a recent proposal by Albert [(2000). Time and chance. Cambridge, MA: Harvard University Press. Chapter 7] to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the quantum state of [Ghirardi, G, Rimini, A and Weber, T., (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review, D 34, 470–479]. We proposed an alternative way to explain thermodynamics within no collapse interpretations of quantum mechanics. In this paper some difficulties faced by both approaches are discussed and solved: the spin echo experiments, and the problem of extremely light gases. In these contexts, we point out several ways in which the above quantum mechanical approaches as well as some other classical approaches to the foundations of statistical mechanics may be distinguished experimentally.  相似文献   

6.
‘Holographic’ relations between theories have become an important theme in quantum gravity research. These relations entail that a theory without gravity is equivalent to a gravitational theory with an extra spatial dimension. The idea of holography was first proposed in 1993 by Gerard ׳t Hooft on the basis of his studies of evaporating black holes. Soon afterwards the holographic ‘AdS/CFT’ duality was introduced, which since has been intensively studied in the string theory community and beyond. Recently, Erik Verlinde has proposed that even Newton׳s law of gravitation can be related holographically to the ‘thermodynamics of information’ on screens. We discuss these scenarios, with special attention to the status of the holographic relation in them and to the question of whether they make gravity and spacetime emergent. We conclude that only Verlinde׳s scheme straightforwardly instantiates emergence. However, assuming a non-standard interpretation of AdS/CFT may create room for the emergence of spacetime and gravity there as well.  相似文献   

7.
8.
One finds, in Maxwell's writings on thermodynamics and statistical physics, a conception of the nature of these subjects that differs in interesting ways from the way they are usually conceived. In particular, though—in agreement with the currently accepted view—Maxwell maintains that the second law of thermodynamics, as originally conceived, cannot be strictly true, the replacement he proposes is different from the version accepted by most physicists today. The modification of the second law accepted by most physicists is a probabilistic one: although statistical fluctuations will result in occasional spontaneous differences in temperature or pressure, there is no way to predictably and reliably harness these to produce large violations of the original version of the second law. Maxwell advocates a version of the second law that is strictly weaker; the validity of even this probabilistic version is of limited scope, limited to situations in which we are dealing with large numbers of molecules en masse and have no ability to manipulate individual molecules. Connected with this is his conception of the thermodynamic concepts of heat, work, and entropy; on the Maxwellian view, these are concept that must be relativized to the means we have available for gathering information about and manipulating physical systems. The Maxwellian view is one that deserves serious consideration in discussions of the foundation of statistical mechanics. It has relevance for the project of recovering thermodynamics from statistical mechanics because, in such a project, it matters which version of the second law we are trying to recover.  相似文献   

9.
I give a brief account of the way in which thermodynamics and statistical mechanics actually work as contemporary scientific theories, and in particular of what statistical mechanics contributes to thermodynamics over and above any supposed underpinning of the latter׳s general principles. In doing so, I attempt to illustrate that statistical mechanics should not be thought of wholly or even primarily as itself a foundational project for thermodynamics, and that conceiving of it this way potentially distorts the foundational study of statistical mechanics itself.  相似文献   

10.
Can we explain the laws of thermodynamics, in particular the irreversible increase of entropy, from the underlying quantum mechanical dynamics? Attempts based on classical dynamics have all failed. Albert (1994a,b; 2000) proposed a way to recover thermodynamics on a purely dynamical basis, using the quantum theory of the collapse of the wavefunction of Ghirardi, Rimini and Weber (1986). In this paper we propose an alternative way to explain thermodynamics within no-collapse interpretations of quantum mechanics. Our approach relies on the standard quantum mechanical models of environmental decoherence of open systems, e.g. Joos and Zeh (1985) and Zurek and Paz (1994).  相似文献   

11.
This paper discusses some philosophical aspects related to the recent publication of the experimental results of the 2017 black hole experiment, namely the first image of the supermassive black hole at the center of galaxy M87. In this paper I present a philosophical analysis of the 2017 Event Horizon Telescope (EHT) black hole experiment. I first present Hacking's philosophy of experimentation. Hacking gives his taxonomy of elements of laboratory science and distinguishes a list of elements. I show that the EHT experiment conforms to major elements from Hacking's list. I then describe with the help of Galison's Philosophy of the Shadow how the EHT Collaboration created the famous black hole image. Galison outlines three stages for the reconstruction of the black hole image: Socio-Epistemology, Mechanical Objectivity, after which there is an additional Socio-Epistemology stage. I subsequently present my own interpretation of the reconstruction of the black hole image and I discuss model fitting to data. I suggest that the main method used by the EHT Collaboration to assure trust in the results of the EHT experiment is what philosophers call the Argument from Coincidence. I show that using this method for the above purpose is problematic. I present two versions of the Argument from Coincidence: Hacking's Coincidence and Cartwright's Reproducibility by which I analyse the EHT experiment. The same estimation of the mass of the black hole is reproduced in four different procedures. The EHT Collaboration concludes: the value we have converged upon is robust. I analyse the mass measurements of the black hole with the help of Cartwright's notion of robustness. I show that the EHT Collaboration construe Coincidence/Reproducibility as Technological Agnosticism and I contrast this interpretation with van Fraassen's scientific agnosticism.  相似文献   

12.
It has often been suggested that retrocausality offers a solution to some of the puzzles of quantum mechanics: e.g., that it allows a Lorentz-invariant explanation of Bell correlations, and other manifestations of quantum nonlocality, without action-at-a-distance. Some writers have argued that time-symmetry counts in favour of such a view, in the sense that retrocausality would be a natural consequence of a truly time-symmetric theory of the quantum world. Critics object that there is complete time-symmetry in classical physics, and yet no apparent retrocausality. Why should the quantum world be any different?This note throws some new light on these matters. I call attention to a respect in which quantum mechanics is different, under some assumptions about quantum ontology. Under these assumptions, the combination of time-symmetry without retrocausality is unavailable in quantum mechanics, for reasons intimately connected with the differences between classical and quantum physics (especially the role of discreteness in the latter). Not all interpretations of quantum mechanics share these assumptions, however, and in those that do not, time-symmetry does not entail retrocausality.  相似文献   

13.
In this paper I discuss the work on quantum physics and wave mechanics by Charles Galton Darwin, a Cambridge wrangler of the last generation, as a case study to better understand the early reception of quantum physics in Britain. I argue that his proposal in the early 1920s to abandon the strict conservation of energy, as well as his enthusiastic embracement of wave mechanics at the end of the decade, can be easily understood by tracing his ontological and epistemological commitments to his early training in the Cambridge Mathematical Tripos. I also suggest that Darwin's work cannot be neglected in a study of quantum physics in Britain, since he was one of very few fellows of the Royal Society able to judge and explain quantum physics and quantum mechanics.  相似文献   

14.
B. R. Frieden uses a single procedure, called extreme physical information, with the aim of deriving ‘most known physics, from statistical mechanics and thermodynamics to quantum mechanics, the Einstein field equations and quantum gravity’. His method, which is based on Fisher information, is given a detailed exposition in this book, and we attempt to assess the extent to which he succeeds in his task.  相似文献   

15.
Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. For this purpose I propose an epistemological criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if it is impossible in principle to infer the global properties, as assigned in the theory, by local resources available to an agent. I propose that these resources include at least all local operations and classical communication. This approach is contrasted with the well-known approaches to holism in terms of supervenience. The criterion for holism proposed here involves a shift in emphasis from ontology to epistemology. I apply this epistemological criterion to classical physics and Bohmian mechanics as represented on a phase and configuration space respectively, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum operations as completely positive trace non-increasing maps. Furthermore, I provide an interesting example from which one can conclude that quantum mechanics is holistic in the above mentioned sense, although, perhaps surprisingly, no entanglement is needed.  相似文献   

16.
John Norton's The Material Theory of Induction bristles with fresh insights and provocative ideas that provide a much needed stimulus to a stodgy if not moribund field. I use quantum mechanics (QM) as a medium for exploring some of these ideas. First, I note that QM offers more predictability than Newtonian mechanics for the Norton dome and other cases where classical determinism falters. But this ability of QM to partially cure the ills of classical determinism depends on facts about the quantum Hamiltonian operator that vary from case to case, providing an illustration of Norton's theme of the importance of contingent facts for inductive reasoning. Second, I agree with Norton that Bayesianism as developed for classical probability theory does not constitute a universal inference machine, and I use QM to explain the sense in which this is so. But at the same time I defend a brand of quantum Bayesianism as providing an illuminating account of how physicists' reasoning about quantum events. Third, I argue that if the probabilities induced by quantum states are regarded as objective chances then there are strong reasons to think that fair infinite lotteries are impossible in a quantum world.  相似文献   

17.
This paper aims to show that the development of Feyerabend's philosophical ideas in the 1950s and 1960s largely took place in the context of debates on quantum mechanics.In particular, he developed his influential arguments for pluralism in science in discussions with the quantum physicist David Bohm, who had developed an alternative approach to quantum physics which (in Feyerabend's perception) was met with a dogmatic dismissal by some of the leading quantum physicists. I argue that Feyerabend's arguments for theoretical pluralism and for challenging established theories were connected to his objections to the dogmatism and conservatism he observed in quantum physics.However, as Feyerabend gained insight into the physical details and historical complexities which led to the development of quantum mechanics, he gradually became more modest in his criticisms. His writings on quantum mechanics especially engaged with Niels Bohr; initially, he was critical of Bohr's work in quantum mechanics, but in the late 1960s, he completely withdrew his criticism and even praised Bohr as a model scientist. He became convinced that however puzzling quantum mechanics seemed, it was methodologically unobjectionable – and this was crucial for his move towards ‘anarchism’ in philosophy of science.  相似文献   

18.
The importance of the Unruh effect lies in the fact that, together with the related (but distinct) Hawking effect, it serves to link the three main branches of modern physics: thermal/statistical physics, relativity theory/gravitation, and quantum physics. However, different researchers can have in mind different phenomena when they speak of “the Unruh effect” in flat spacetime and its generalization to curved spacetimes. Three different approaches are reviewed here. They are shown to yield results that are sometimes concordant and sometimes discordant. The discordance is disconcerting only if one insists on taking literally the definite article in “the Unruh effect.” It is argued that the role of linking different branches of physics is better served by taking “the Unruh effect” to designate a family of related phenomena. The relation between the Hawking effect and the generalized Unruh effect for curved spacetimes is briefly discussed.  相似文献   

19.
I began this study with Laudan's argument from the pessimistic induction and I promised to show that the caloric theory of heat cannot be used to support the premisses of the meta-induction on past scientific theories. I tried to show that the laws of experimental calorimetry, adiabatic change and Carnot's theory of the motive power of heat were (i) independent of the assumption that heat is a material substance, (ii) approximately true, (iii) deducible and accounted for within thermodynamics.I stressed that results (i) and (ii) were known to most theorists of the caloric theory and that result (iii) was put forward by the founders of the new thermodynamics. In other words, the truth-content of the caloric theory was located, selected carefully, and preserved by the founders of thermodynamics.However, the reader might think that even if I have succeeded in showing that laudan is wrong about the caloric theory, I have not shown how the strategy followed in this paper can be generalised against the pessimistic meta-induction. I think that the general strategy against Laudan's argument suggested in this paper is this: the empirical success of a mature scientific theory suggests that there are respects and degrees in which this theory is true. The difficulty for — and and real challenge to — philosophers of science is to suggest ways in which this truth-content can be located and shown to be preserved — if at all — to subsequent theories. In particular, the empirical success of a theory does not, automatically, suggest that all theoretical terms of the theory refer. On the contrary, judgments of referential success depend on which theoretical claims are well-supported by the evidence. This is a matter of specific investigation. Generally, one would expect that claims about theoretical entities which are not strongly supported by the evidence or turn out to be independent of the evidence at hand, are not compelling. For simply, if the evidence does not make it likely that our beliefs about putative theoretical entities are approximately correct, a belief in those entities would be ill-founded and unjustified. Theoretical extrapolations in science are indespensable , but they are not arbitrary. If the evidence does not warrant them I do not see why someone should commit herself to them. In a sense, the problem with empricist philisophers is not that they demand that theoretical beliefs must be warranted by evidence. Rather, it is that they claim that no evidence can warrant theorretical beliefs. A realist philosopher of science would not disagree on the first, but she has good grounds to deny the second.I argued that claims about theoretical entities which are not strongly supported by the evidence must not be taken as belief-worthy. But can one sustaon the more ambitious view that loosely supported parts of a theory tend to be just those that include non-referring terms? There is an obvious excess risk in such a generalisation. For there are well-known cases in which a theoretical claim was initially weakly supported by the evidence  相似文献   

20.
Along with exploring some of the necessary conditions for the chemistry of our world given what we know about quantum mechanics, I will also discuss a different reductionist challenge than is usually considered in debates on the relationship of chemistry to physics. Contrary to popular belief, classical physics does not have a reductive relationship to quantum mechanics and some of the reasons why reduction fails between classical and quantum physics are the same as for why reduction fails between chemistry and quantum physics. However, a neoreductionist can accept that classical physics has some amount of autonomy from quantum mechanics, but still try to maintain that classical+quantum physics taken as a whole reduces chemistry to physics. I will explore some of the obstacles lying in the neoreductionist's path with respect to quantum chemistry and thereby hope to shed more light on the conditions necessary for the chemistry of our world.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号