共查询到16条相似文献,搜索用时 0 毫秒
1.
In the early days of general relativity, several of Einstein׳s readers misunderstood the role of coordinates or “mesh-system” in ways that threatened the basic predictions of the theory. This confusion largely derived from intrinsic defects of Einstein׳s first systematic exposition of his theory. A few of Einstein׳s followers, including Arthur Eddington, Hermann Weyl, and Max von Laue, identified the interpretive difficulties and solved them by combining a deeply geometrical understanding of the theory with detailed attention to the concrete conditions of measurement. 相似文献
2.
We present the fractional quantum Hall (FQH) effect as a candidate emergent phenomenon. Unlike some other putative cases of condensed matter emergence (such as thermal phase transitions), the FQH effect is not based on symmetry breaking. Instead FQH states are part of a distinct class of ordered matter that is defined topologically. Topologically ordered states result from complex long-ranged correlations between their constituent parts, such that the system displays strongly irreducible, qualitatively novel properties. 相似文献
3.
The apparent dichotomy between quantum jumps on the one hand, and continuous time evolution according to wave equations on the other hand, provided a challenge to Bohr's proposal of quantum jumps in atoms. Furthermore, Schrödinger's time-dependent equation also seemed to require a modification of the explanation for the origin of line spectra due to the apparent possibility of superpositions of energy eigenstates for different energy levels. Indeed, Schrödinger himself proposed a quantum beat mechanism for the generation of discrete line spectra from superpositions of eigenstates with different energies.However, these issues between old quantum theory and Schrödinger's wave mechanics were correctly resolved only after the development and full implementation of photon quantization. The second quantized scattering matrix formalism reconciles quantum jumps with continuous time evolution through the identification of quantum jumps with transitions between different sectors of Fock space. The continuous evolution of quantum states is then recognized as a sum over continually evolving jump amplitudes between different sectors in Fock space.In today's terminology, this suggests that linear combinations of scattering matrix elements are epistemic sums over ontic states. Insights from the resolution of the dichotomy between quantum jumps and continuous time evolution therefore hold important lessons for modern research both on interpretations of quantum mechanics and on the foundations of quantum computing. They demonstrate that discussions of interpretations of quantum theory necessarily need to take into account field quantization. They also demonstrate the limitations of the role of wave equations in quantum theory, and caution us that superpositions of quantum states for the formation of qubits may be more limited than usually expected. 相似文献
4.
Bert Schroer 《Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics》2010,41(4):293-308
The main topics of this second part of a two-part essay are some consequences of the phenomenon of vacuum polarization as the most important physical manifestation of modular localization. Besides philosophically unexpected consequences, it has led to a new constructive “outside-inwards approach” in which the pointlike fields and the compactly localized operator algebras which they generate only appear from intersecting much simpler algebras localized in noncompact wedge regions whose generators have extremely mild almost free field behavior.Another consequence of vacuum polarization presented in this essay is the localization entropy near a causal horizon which follows a logarithmically modified area law in which a dimensionless area (the area divided by the square of dR where dR is the thickness of a light-sheet) appears. There are arguments that this logarithmically modified area law corresponds to the volume law of the standard heat bath thermal behavior. We also explain the symmetry enhancing effect of holographic projections onto the causal horizon of a region and show that the resulting infinite dimensional symmetry groups contain the Bondi–Metzner–Sachs group. This essay is the second part of a partitioned longer paper. 相似文献
5.
Amit Hagar 《Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics》2007,38(4):906-919
Among the alternatives of non-relativistic quantum mechanics (NRQM) there are those that give different predictions than quantum mechanics in yet-untested circumstances, while remaining compatible with current empirical findings. In order to test these predictions, one must isolate one's system from environmental induced decoherence, which, on the standard view of NRQM, is the dynamical mechanism that is responsible for the ‘apparent’ collapse in open quantum systems. But while recent advances in condensed-matter physics may lead in the near future to experimental setups that will allow one to test the two hypotheses, namely genuine collapse vs. decoherence, hence make progress toward a solution to the quantum measurement problem, those philosophers and physicists who are advocating an information-theoretic approach to the foundations of quantum mechanics are still unwilling to acknowledge the empirical character of the issue at stake. Here I argue that in doing so they are displaying an unwarranted double standard. 相似文献
6.
7.
Fritz London's seminal idea of “quantum mechanisms of macroscopic scale”, first articulated in 1946, was the unanticipated result of two decades of research, during which London pursued quantum-mechanical explanations of various kinds of systems of particles at different scales. He started at the microphysical scale with the hydrogen molecule, generalized his approach to chemical bonds and intermolecular forces, then turned to macrophysical systems like superconductors and superfluid helium. Along this path, he formulated a set of concepts—the quantum mechanism of exchange, the rigidity of the wave function, the role of quantum statistics in multi-particle systems, the possibility of order in momentum space—that eventually coalesced into a new conception of systems of equal particles. In particular, it was London's clarification of Bose-Einstein condensation that enabled him to formulate the notion of superfluids, and led him to the recognition that quantum mechanics was not, as it was commonly assumed, relevant exclusively as a micromechanics. 相似文献
8.
This paper investigates Hermann Weyl’s reception of philosophical concepts stemming from the German Idealist Johann Gottlieb Fichte. In particular, Weyl’s ‘agens theory’ of matter, which he held around 1925, will be looked at. In the extant literature, the—admittedly also important—influence of Husserl on Weyl has mainly been addressed. Thus, apart from investigating some detailed Fichtean inheritances in Weyl’s concepts of causality, chance and continuity, the general difference which Weyl saw between the philosophies of Fichte and Husserl will also be discussed. For Weyl this is above all a difference between an active constructivism and a rather passive phenomenological seeing (Schau). Further, the paper shows in some detail the way Weyl was drawn into a certain reading of Fichte by his Zurich colleague, the philosopher Fritz Medicus. The methodological frame of the paper is that of Konstellationsforschung, a historical and systematic approach which proves to be particularly fruitful when investigating a (broadly speaking) German Idealist context and which allows special attention to be given to the acting subjects within the constellation under investigation. Conversely, Weyl’s agens theory suggests amendments to this methodology. 相似文献
9.
James Owen Weatherall 《Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics》2011,42(4):276-281
A theorem due to Geroch and Jang (1975) provides a sense in which the geodesic principle has the status of a theorem in General Relativity. I have recently shown that a similar theorem holds in the context of geometrized Newtonian gravitation (Newton–Cartan theory) (Weatherall, J.O., 2011). Here I compare the interpretations of these two theorems. I argue that despite some apparent differences between the theorems, the status of the geodesic principle in geometrized Newtonian gravitation is, mutatis mutandis, strikingly similar to the relativistic case. 相似文献
10.
The early history of the attempts to unify quantum theory with the general theory of relativity is depicted through the work of the Italian physicist Gleb Wataghin, who, in the context of quantum electrodynamics, has anticipated some of the ideas that the quantum gravity community is entertaining today. 相似文献
11.
I show explicitly how concerns about wave function collapse and ontology can be decoupled from the bulk of technical analysis necessary to recover localized, approximately Newtonian trajectories from quantum theory. In doing so, I demonstrate that the account of classical behavior provided by decoherence theory can be straightforwardly tailored to give accounts of classical behavior on multiple interpretations of quantum theory, including the Everett, de Broglie–Bohm and GRW interpretations. I further show that this interpretation-neutral, decoherence-based account conforms to a general view of inter-theoretic reduction in physics that I have elaborated elsewhere, which differs from the oversimplified picture that treats reduction as a matter of simply taking limits. This interpretation-neutral account rests on a general three-pronged strategy for reduction between quantum and classical theories that combines decoherence, an appropriate form of Ehrenfest׳s Theorem, and a decoherence-compatible mechanism for collapse. It also incorporates a novel argument as to why branch-relative trajectories should be approximately Newtonian, which is based on a little-discussed extension of Ehrenfest׳s Theorem to open systems, rather than on the more commonly cited but less germane closed-systems version. In the Conclusion, I briefly suggest how the strategy for quantum-classical reduction described here might be extended to reduction between other classical and quantum theories, including classical and quantum field theory and classical and quantum gravity. 相似文献
12.
Amit Hagar 《Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics》2009,40(3):259-267
The paper highlights a recent debate in the quantum gravity community on the status of Lorentz invariance in theories that introduce a fundamental length scale, and in particular in deformed special relativity. Two arguments marshaled against that theory are examined and found wanting. 相似文献
13.
I present the reconstruction of the involvement of Karl Popper in the community of physicists concerned with foundations of quantum mechanics, in the 1980s. At that time Popper gave active contribution to the research in physics, of which the most significant is a new version of the EPR thought experiment, alleged to test different interpretations of quantum mechanics. The genesis of such an experiment is reconstructed in detail, and an unpublished letter by Popper is reproduced in the present paper to show that he formulated his thought experiment already two years before its first publication in 1982. The debate stimulated by the proposed experiment as well as Popper's role in the physics community throughout 1980s is here analysed in detail by means of personal correspondence and publications. 相似文献
14.
The question of the existence of gravitational stress-energy in general relativity has exercised investigators in the field since the inception of the theory. Folklore has it that no adequate definition of a localized gravitational stress-energetic quantity can be given. Most arguments to that effect invoke one version or another of the Principle of Equivalence. I argue that not only are such arguments of necessity vague and hand-waving but, worse, are beside the point and do not address the heart of the issue. Based on a novel analysis of what it may mean for one tensor to depend in the proper way on another, which, en passant, provides a precise characterization of the idea of a “geometric object”, I prove that, under certain natural conditions, there can be no tensor whose interpretation could be that it represents gravitational stress-energy in general relativity. It follows that gravitational energy, such as it is in general relativity, is necessarily non-local. Along the way, I prove a result of some interest in own right about the structure of the associated jet bundles of the bundle of Lorentz metrics over spacetime. I conclude by showing that my results also imply that, under a few natural conditions, the Einstein field equation is the unique equation relating gravitational phenomena to spatiotemporal structure, and discuss how this relates to the non-localizability of gravitational stress-energy. The main theorem proven underlying all the arguments is considerably stronger than the standard result in the literature used for the same purposes (Lovelock's theorem of 1972): it holds in all dimensions (not only in four); it does not require an assumption about the differential order of the desired concomitant of the metric; and it has a more natural physical interpretation. 相似文献
15.
The paper takes up Bell's (1987) “Everett (?) theory” and develops it further. The resulting theory is about the system of all particles in the universe, each located in ordinary, 3-dimensional space. This many-particle system as a whole performs random jumps through 3N-dimensional configuration space – hence “Tychistic Bohmian Mechanics” (TBM). The distribution of its spontaneous localisations in configuration space is given by the Born Rule probability measure for the universal wavefunction. Contra Bell, the theory is argued to satisfy the minimal desiderata for a Bohmian theory within the Primitive Ontology framework (for which we offer a metaphysically more perspicuous formulation than is customary). TBM's formalism is that of ordinary Bohmian Mechanics (BM), without the postulate of continuous particle trajectories and their deterministic dynamics. This “rump formalism” receives, however, a different interpretation. We defend TBM as an empirically adequate and coherent quantum theory. Objections voiced by Bell and Maudlin are rebutted. The “for all practical purposes”-classical, Everettian worlds (i.e. quasi-classical histories) exist sequentially in TBM (rather than simultaneously, as in the Everett interpretation). In a temporally coarse-grained sense, they quasi-persist. By contrast, the individual particles themselves cease to persist. 相似文献
16.
The paper investigates Kant's pre-critical views on the use of analytic and synthetic methods in Newtonian science and in philosophical reasoning. In his 1755/56 writings, Kant made use of two variants of the analytic method, i.e., conceptual analysis in a Cartesian (or Leibnizean) sense, and analysis of the phenomena in a Newtonian sense. His Prize Essay (1764) defends Newton's analytic method of physics as appropriate for philosophy, in contradistinction to the synthetic method of mathematics. A closer look, however, shows that Kant does not identify Newton's method with conceptual analysis, but just suggests a methodological analogy between both methods. Kant’s 1768 paper on incongruent counterparts also fits in with his pre-critical use of conceptual analysis. Here, Kant criticizes Leibniz’ relational concept of space, arguing that it is incompatible with the phenomenon of chiral objects. Since this result was in conflict with his pre-critical views about space, Kant abandoned the analytic method of philosophy in favour of his critical method. The paper closes by comparing Kant's pre-critical analytic method and the way in which he once again took up the methodological analogy between Newtonian science and metaphysics, in the preface B to the Critique of Pure Reason, in the context of his thought experiment of pure reason. 相似文献