共查询到20条相似文献,搜索用时 0 毫秒
1.
设G是一个图,且t是一个实数,若对每个,其中k(G—S)是G—S的分支数,则称G是t坚韧图(t-tough graph)。显然,1坚韧图是2连通的。用δ,κ,α分别表示G的最小度、连通度和独立数,利用以上记号,有如下定理: 定理1 设G是p阶1坚韧图,若δ≥ 相似文献
2.
B. Jackson(参见J. Comb. Theory(B),29(1980),27—46)证明了2连通k正则的图G=(V,E),当点数n≤3k时G有Hamilton圈;在“The improvcment of Jackson's result on Hamiltonian Cyclesin 2-connected regular graphs”一文中我们改进了Jackson的结果,证明了2连通的k正则图,当 相似文献
3.
在本文中,所有的图都是简单图,未定义的术语是常见的。众所周知,一个n阶图G,若对任何点对x,y;xy(?)E(G)总有d(x)+d(y)≥n,则G是Hamilton图(Ore,1960);进一步,G是泛圈图或二部图~K(n/2),n/2(Bondy,1971年)。 相似文献
4.
本文所说的都是简单图;未定义的术语和记号是常用的。 1.一个图被称为K_(1,3)-free图,如果它不含有同构于K_(1,3)的导出子图。近年来,在利用禁用于图刻划Hamilton图的结构特征 相似文献
5.
设G=G(V,E)为简单图。d(u)表G中顶点u的度,d(u,v)表顶点u与v的距离。ω(G)表G的分支个数。本文证明了下述定理。 定理 阶数n≥3的简单图G满足下述两条件: 相似文献
6.
不含导出子图同构于K_(1,3)或F的图称{K_(1,3),F}-free图.设图G含有无弦的点控制圈(简称VD-圈):C=C_1C_2…C_kC_1,并假定依下标顺序给定一正向.用C_(ij)表示沿C的正向从C_i到C_j的一段道路.如果{C_i,C_j}是G的2-割集,当G无爪(K_(1,3)-free)时,G-{C_i,C_j}恰有两个分支.用G_(ij)表示G的满足G_(ij)∩C=C_(ij)的极大连通子图.设P=v_0v_1…v_(d-1)v_d是G的一条直径路,X={x∈V|d(x,P)>l}.当G是{K_(1,3),F}-free图且d≥3时,同文献[1]定义 相似文献
7.
如果存在一个图G到图H的子图G′上的同构φ,我们就记作GH,说G嵌入到H内,而φ称为G到H内的一个嵌入。1982年,D.Bauer和R.Tindell对既不是道路,也不是K_(1,3)的图G定义了一个不变量∧(G),它是使GL~n(G)成立的最小的n,n≥1。他们研究了∧(G)=1的图,并提出研究∧(G)=2的图,以及对所有树T,确定∧(T)这两 相似文献
8.
一、引言 我们讨论的图均为简单图,K和α分别表示图的连通度和独立数。我们采用文献[1]的术语和符号,并记G_n~k={G丨G为n阶k-连通图},H_e={G丨G是Hamilton连通图},用P_H(u,v)表示从u到v的Hamilton路。图G中的路P称为控制路,如果G[P(G)\V(P)]均为孤立点.给出图G中的一条(x,y)-路P,总认为是从x到y定向,表示的反向。若u,v∈V(P),则uv表示P上沿从u到v的路。又u≠y,v≠x,则u~+和v~-分 相似文献
9.
10.
哪些图可1-因子分解?换言之,哪些图是正则1类图?这是一个尚未解决的有趣问题。众所周知,四色定理成立的一个充分必要条件是每个无桥的3-正则平面图可1-因子分解。由此可以看出上述问题的意义和难度。Jaeger证明,若一个有偶数条线的图可1- 相似文献
11.
本文讨论的图都是无向的简单图。图G称为无爪的,如果G没有同构于K_(1,3)的顶点导出子图。 关于2连通正则图的Hamilton性,1980年B.Jackson证明了:若G是2连通、k正则图,且G的顶点数不大于3k,则G是 相似文献
12.
本文我们讨论下列方程的周期解存在性问题,其中x=(x_1,…,x_n)∈R~n,▽U表示U的梯度。本文主要结果为下面定理。 相似文献
13.
Kelly提出:正则竞赛图T是否能分解为1/2(|T|-1)个弧不重的Hamilton回路(|T|表示T的顶点个数).此猜想是图论中至今未解决的难题之一.近年来,国外关于Kelly猜想的工作有:Alspach证明了9个顶点以下的 相似文献
14.
k-连通无爪图中的Hamilton路和Hamilton-连通性 总被引:1,自引:0,他引:1
本文涉及的图都是无向简单图。而无爪图就是不存在顶点的导出子图同构于K_(1,3)的图。 1985年,Matthews等讨论了无爪图中的最长路和最长圈。证明了:设G是一个n阶无爪图,其最小次δ≥1/3(n-2)。若G 相似文献
15.
本文讨论的图都是无向的简单图。设G是一个图,分别用V(G)和E(G)表示图G的顶点集和边集。又设“、v∈V(G),用d(v)表示v的次数,用vu表示连结u、v的边。 相似文献
16.
Morita系统环的IBN性 总被引:1,自引:0,他引:1
在环论研究中,IBN(不变基数)性质(参见文献[1])是一个非常重要的性质,只有在IBN环上的自由模才可定义其维数和秩,IBN环在代数K-理论和拓扑学中也有应用.另一方面,Morita系统环(ring of Morita context)是一个包含众多环类的非交换环,如矩阵环、自同态环和环的Morita等价等,它的IBN性引起人们的兴趣.本文证明了若M为有限生成右S-模,N为有限生成左S-模,则T为IBN环当且仅当R或S为IBN环.这一结果使许多重要的已知结论成为特例. 相似文献
17.
本文主要是将域F上线性群GL_n(F)的生成元定理,推广到局部环R上的线性群GL_n(R)上去,因为对于局部环R上的n维R空间V及GL_n(R)中元素σ来说,Q=(σ-1)V及M={x∈V|σx=x}一般只是V的R子模而未必是V的R子空间,所以,O.T.O'Meara所定义的剩余空间的概念不能直接 相似文献
18.
“路图”是线图概念的发展.给定一个图G及自然数k≥2,路图P_k(G)的顶点是G中k个顶点的路P_k;两条路P_k在路图中是相邻的,如果它们的并是P_(k+1)或C_k.为 相似文献
19.
设E_R为一个内射右R-模,我们称E_R为一个Σ(Δ)-内射模,如果E在R中的右零化子集满足升链(降链)条件,称一个含有单位元的环为Duo环,若它的任意单侧理想都是双侧理想。一个环称为是一个Σ(Δ)-环, 相似文献
20.
设R为一环,若对任何r∈R,存在x∈R,使得r=rxr,则称R为(von Neumann)正则的。关于群环和逆半群环的正则性的研究,分别见文[2]和[3]。本文广泛研究了半群环的正则性,并对局部有限逆半群、广义Brandt半群、 相似文献