共查询到20条相似文献,搜索用时 109 毫秒
1.
数据挖掘是近年来出现的一种综合机器学习、统计学、数据库等众多领域的新技术,而关联规则是数据挖掘的核心技术。本文通过对关联规则挖掘算法的分析,给出了优化思想,最后展望了关联规则挖掘的未来方向。 相似文献
2.
3.
在分析广义关联规则基本模型和求解在规则的基本性质基础上,提出一个新的基于关系操作的挖掘广义关联规则算法,该算法既使用了成熟的关系操作又充分利用先验,在多概念层上交互挖掘关联规则,有很好的实用性。 相似文献
4.
快速关联规则挖掘算法 总被引:1,自引:0,他引:1
提出了一种新颖的关联规则挖掘算法QAIS,与经典两阶段式关联规则挖掘算法不同的是,它只需扫描一遍事务数据库,不需要生成候选集,并且可以方便的应用在增量式关联规则挖掘算法中,该算法经合成数据验证是有效的.同时针对关联规则生成过程中出现大量冗余规则的问题,还讨论了冗余关联规则去除的问题. 相似文献
5.
介绍了关联规则挖掘算法的基本原理,并按照挖掘中涉及到的变量数目(维数)、数据的抽象层次和处理变量的类别(布尔型和数值型),依次对关联规则挖掘算法的研究进行综述,并对一些典型的算法进行分析和比较,最后展望了关联规则挖掘算法的研究方向。 相似文献
6.
数据挖掘是近年来出现的一种综合机器学习、统计学、数据库等众多领域的新技术,而关联规则是数据挖掘的核心技术。本文通过对关联规则挖掘算法的分析,给出了优化思想,最后展望了关联规则挖掘的未来方向。 相似文献
7.
8.
Apriori算法是关联规则挖掘的经典算法,该算法在处理规模巨大的候选项目集时存在耗时长和效率低的问题,提出了采用分割法对数据进行分片的优化算法.实验证明该算法不仅能减少数据挖掘对系统资源的占用,而且解决了数据库中数据分割下局部频繁项目序列集产生和全局频繁项目序列集的转换问题. 相似文献
9.
多层次关联规则的快速挖掘算法 总被引:1,自引:0,他引:1
数据挖掘被认为是解决“数据爆炸”和“数据丰富,信息贫乏”的一种有效方法。关联规则是数据挖掘的重要研究方向。本文提出了多层次关联规则的一种快速挖掘算法,利用抽样从概念层次树的中间开始挖掘,以提高挖掘的速度。 相似文献
10.
介绍了由ChristianHidber提出的在线挖掘关联规则算法Carma,提出了该算法的若干改进,减弱了原算法第一步有交易的子集v被插入集合V的条件,同时改进了maxMissed的计算公式,使其计算更为简单。实验证明,以上改进提高了算法的速度。 相似文献
11.
基于trie的关联规则发现算法 总被引:2,自引:1,他引:2
郑丽英 《兰州理工大学学报》2004,30(5):90-92
分析了现有的关联规则挖掘算法,总结了当前的研究概况,从数据结构的角度出发,提出了用trie做数据结构存储交易数据库的所有项集,实现快速产生频繁项集,改进关联发现的性能.该方法只需一次扫描数据库,能够支持小的支持度计数和数据库的动态修改. 相似文献
12.
在关联规则挖掘中,大量的数据是多维的,且带有时态特性,所以往往需要在时态约束的前提下挖掘多维关联规则.本文从一个实际问题出发,在单维Apriori算法和已有的工作基础上,提出了一种新的多维时态关联规则挖掘算法,并与类似算法进行了比较. 相似文献
13.
关联规则挖掘方法的改进 总被引:3,自引:2,他引:3
分析了关联规则的衡量标准,针对其中的缺点和不足,提出了一种匹配度方法用以取代置信度,并将匹配度方法生成的规则与支持度-置信度框架生成的规则进行了比较.结果表明:用匹配度方法生成的规则不仅前件和后件具有较高的相关性,而且减少了冗余规则的生成. 相似文献
14.
文章给出了改进的加权关联规则的定义,包括加权关联规则的支持度、信任度、有意义度及支持界等.设计了一套挖掘加权关联规则的行之有效的算法,并通过例子说明了算法的有效性. 相似文献
15.
数据挖掘中关联规则的研究与论证 总被引:2,自引:0,他引:2
数据挖掘由一些大型零售机构面临的“决策支持”问题所激发。对数据挖掘中的关联规则的概念和作用进行了探讨,对关联规则中寻找大项集的部分用程序流程的方式加以说明,对自连接操作的提高效率问题加以论证。通过例子说明了数据挖掘关联规则中最大项目集的子集必为最大项目集。 相似文献
16.
数据挖掘中的关联规则 总被引:2,自引:0,他引:2
潘福铮 《湖北大学学报(自然科学版)》2002,24(4):304-308
关联规则(Association Rules)是数据挖掘(Data Mining)中的重要工具,系统综述关联规则的各种形式及研究动态,供读对不同的对象与背景,有效地运用关联规则的原理与方法解决实际问题。 相似文献
17.
一种基于关联规则的数据挖掘算法实现与应用 总被引:1,自引:0,他引:1
对Apriori算法加以改进,提出了一种更高效的关联规则挖掘算法,在扫描数据库的同时把支持每个项目的事务都标记出来,采用一种新的方法来计算候选项目集的支持度.该算法只需对源数据库进行一次扫描,就可以找出所有的频繁集,具有很高的效率. 相似文献
18.
关联规则挖掘的一种多剪枝概念格方法 总被引:1,自引:0,他引:1
多数据源上关联规则挖掘方法,由于各数据节点间相互通信的候选项集数目过于庞大或者挖掘过程需要对数据库进行多次扫描,导致挖掘算法效率不高。研究剪枝概念格(pruned con-cept laffice,PCL)中概念与频繁项集表示关系,定义剪枝格上的导出频繁项集,设计了一个利用多剪枝概念格从多数据源上挖掘近似所有关联规则的算法UMPCL(union algorithm of multiplepruned concept lattice)。利用一个频繁概念表示一些频繁项集以减少挖掘过程中产生的侯选项集数,使用与全局支持度相等的局部支持度对各子概念格进行剪枝,最后融合、剪枝各子剪枝格并提取全局关联规则。理论分析和实验验证表明该算法是有效的。 相似文献
19.
20.
介绍了模糊关联规则挖掘算法的基本思想及实现步骤,提出了模糊关联规则的并行挖掘算法.并行挖掘算法采用并行的模糊c-均值算法将数量型属性划分成若干个模糊集,并借助模糊集软化属性的划分边界.用改进布尔型关联规则的并行挖掘算法来发现频繁模糊属性集.最后由多个处理器并行地产生满足最小模糊信任度的模糊关联规则.在分布式互连的PC/工作站环境下进行性能分析,结果表明并行的挖掘算法具有好的可扩展性、规模增长性和加速比性能. 相似文献