首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
双螺杆挤出机制备了相容剂PP-g-MA或PP-g-GMA增容PP/回收PET(r-PET)(质量比为80/20)共混物,DSC研究了相容剂含量、熔融温度与时间以及降温速率对共混物非等温结晶与熔融行为的影响。加入PP-g-MA或PP-g-GMA对PP结晶温度影响不明显或使其有所降低,与相容剂种类及其用量有关。PP-g-MA增容共混物中r-PET熔点比PP-g-GMA增容的低,表明相容剂PP-g-MA与共混物中r-PET的作用比PP-g-GMA的明显。熔融温度提高,共混物中PP结晶和熔点降低,r-PET熔融峰形和熔点取决于熔融温度。  相似文献   

2.
熔融共混苯乙烯-异戊二烯嵌段共聚物(SIBC)和溴化丁基橡胶(BIIR),以滑石粉(TA)为填充剂,得到共混物(SIBC/BIIR).在一定的温度和压力下,用过氧化二异丙苯(DCP)硫化交联和发泡剂(AD)发泡,得到低弹性闭孔式发泡材料,弹性低于12%.研究了共混比、温度对力学性能的影响,用转矩硫化仪研究了硫化行为.较好的硫化温度为433~443K,最佳温度为438K.硫化指数(CRI)可作为确定硫化温度的参考指标.用扫描电镜(SEM)表征了材料剖面气孔的形态结构.  相似文献   

3.
制备了不同相容剂增容回收PET/PP共混物,用DSC方法研究了相容剂对r-PET结晶与熔融行为的影响,r-PET对PP结晶与熔融行为的影响和相容剂对r-PET/PP共混物结晶与熔融行为的影响,观察到PP结晶温度随着r-PET含量增加而提高,r-PET结晶温度随着PP含量增加而降低,相容剂加入明显降低共混物中r-PET结晶温度,但不同相容剂对共混物中r-PET结晶与熔融行为影响不大,共混物中PP结晶性能与相容剂的大分子链有关。  相似文献   

4.
为了开发新一代可回收电缆材料,提升其绝缘性能,选取间氨基苯硼酸、2-甲氧基-5-吡啶硼酸和间氨基苯甲酸3种新型电压稳定剂添加入聚乙烯共混物中,分析其对聚乙烯共混物绝缘性能的改善作用及机理。采用溶液法将质量分数为1%的电压稳定剂添加入含质量分数为10%高密度聚乙烯(HDPE)的低密度聚乙烯(LDPE)共混材料,通过热压法制备试样,利用红外光谱、差式扫描量热法、X射线衍射、电树枝起始实验、直流电导率和空间电荷测量对材料进行物理化学分析和电气性能测试。研究结果表明,聚乙烯共混提升了热稳定性和结晶度,添加电压稳定剂后进一步提升了共混物的结晶度,对共混物的熔融特性无明显影响。添加了电压稳定剂的共混物的电树枝起始电压均明显提高,间氨基苯甲酸共混物的电树枝起始电压比LDPE/HDPE共混物提高了47%。电压稳定剂对共混物的直流电导率作用明显,间氨基苯甲酸能够明显降低共混物的直流电导率。3种电压稳定剂对共混物的空间电荷积累具有明显的抑制作用,且添加了间氨基苯硼酸的共混物具有最少的空间电荷积累。陷阱能级和视在迁移率计算发现,添加了电压稳定剂的共混物中浅陷阱密度增加,视在电荷迁移率增大,有利于抑制材料中空间电荷的积累。实验结果可为新一代环保电缆的开发提供一定参考。  相似文献   

5.
以丁基橡胶(IIR)为原料,在非啮合反向双螺杆挤出机中制备了氯化丁基橡胶(CIIR),在80℃下用液溴溴化CIIR正己烷溶液获得溴氯化丁基橡胶(BCIIR)。用1 H-NMR、热重分析仪和无转子硫化仪对卤化丁基橡胶的结构、热稳定性和硫化性能进行了研究。结果表明,氯化挤出制备了w(Cl)=1.1%的CIIR,当氯化挤出温度为100~110℃时,有利于生成仲位氯代烯丙基结构,CIIR中尚余少量异戊二烯结构。BCIIR中w(Br)为0.2%~0.8%,并随液溴加入量的增加而提高。CIIR的溴化会导致橡胶的重均分子量和不饱和度下降,但不饱和度仍可保持在1.2%左右。CIIR溴化后热稳定性提高,BCIIR的热分解温度高于CIIR,并随溴质量分数的增加而进一步升高;BCIIR的硫化速度明显加快,比CIIR提高了5%,比IIR提高了14%。  相似文献   

6.
以线性低密度聚乙烯(LLDPE)与低密度聚乙烯(LDPE)为原料,经Brabender挤出机熔融吹膜制备出LLDPE/LDPE共混膜,并借助差示扫描量热仪(DSC)、偏光显微镜(POM)、电子万能试验机和毛细管流变仪研究了LLDPE/LDPE共混物的结晶行为、结晶形态、力学性能以及熔体流变性能.结果表明:加入适量LDPE后,共混膜仍然具有较好的综合力学性能.随着LDPE质量分数的增加,共混物的结晶度下降,晶粒尺寸减小;共混物的熔体流变性能提高.  相似文献   

7.
相容剂改性Al(OH)3/PP复合材料的非等温结晶行为   总被引:2,自引:0,他引:2  
制备了4种大分子相容剂与PP共混物及其改性A l(OH)3/PP复合材料。用DSC结晶曲线研究了共混物、A l(OH)3/PP和改性A l(OH)3/PP复合材料的非等温结晶行为。结果表明相容剂/PP共混物的结晶温度与相容剂有关。相容剂对PP异相成核能力从高到低为PP-g-MA>PP-g-AA>POE-g-MA>EVA-g-MA。A l(OH)3异相成核能力比相容剂的高,PP-g-AA、PP-g-MA与A l(OH)3存在协同诱导结晶作用,使PP结晶温度和结晶度进一步提高。  相似文献   

8.
用超临界 CO2 (SC- CO2 )作为溶剂和溶胀剂 ,在 35℃ ,9~ 1 6MPa的压力范围内将聚苯乙烯(PS)渗入聚乙烯 (PE) ,并在一定的反应条件下使之发生聚合反应 ,制得聚乙烯 /聚苯乙烯 (PE/PS)共混物。研究了 SC- CO2 压力、溶胀时间及单体浓度对产物的影响。用扫描电镜对共混物的形态进行了表征 ,并对其进行了力学性能的测定。结果表明 ,PS组分均匀地分布在 PE基体中 ,共混物的拉伸强度和冲击强度都得到了提高。  相似文献   

9.
mLLDPE/LDPE共混物相结构的研究   总被引:2,自引:0,他引:2  
采用SAXS方法研究了不同配比的茂金属催化聚乙烯(mLLDPE)/低密度聚乙烯(LDPE)共混物的界面层厚度σb、Porod指数α、分散相尺寸ac值、积分不变量Q值等相结构参数。研究结果表明,共混物中两相具有部分相容性,分散相以片状存在;当共混质量比为80/20和20/80时,显示良好的混合均匀性。  相似文献   

10.
本研究合成了聚乳酸聚氨酯嵌段共聚物预聚体(PLA-b-PUP),以其作为聚乳酸(PLA)和热塑性聚氨酯(TPU)的活性相容剂,通过原位反应增容制备了PLA/TPU/PLA-b-PUP超韧共混物。通过拉伸试验、冲击试验、SEM、FT-IR、DSC和TGA研究了共混物的力学性能、热性能和增韧机理。结果表明,PLA-b-PUP中的异氰酸酯基团与PLA和TPU上的活性基团发生了反应,显著改善了PLA/TPU共混物两相界面的相容性。随着PLA-b-PUP的加入,共混物中PLA的玻璃化转变温度和相对结晶度逐渐降低,当PLA-b-PUP的质量分数为PLA/TPU共混物的4%时,共混材料的断裂伸长率和缺口冲击强度分别达到无相容剂时的8.12倍和2.73倍,表现出良好的增容增韧效果。添加PLA-b-PUP后,共混物的初始分解温度有所降低,但最快分解温度有所提高。  相似文献   

11.
系统研究了P-2500 HMWPVC/PVC/P-4002部分交联粉末NBR的共混配比与工艺-亚微相态-力学性能之间的关系.结果表明,在硬度相同的条件下,NBR用量增加,共混体系压缩永久形变降低,作者从结构和亚微相态给予了解释;同时,体系的冲击回弹降低,强度和伸长率呈单峰形变化.NBR/HMWPVC=40/100时,体系的综合性能最佳.除了共混配比与体系压缩永久形变性能密切相关之外,剪切作用越强,部分交联粉末NBR在HMWPVC中分散越好,亚微相态中近似网络结构越多,体系压缩永久形变越低.作者提出了该体系的亚微相态结构模型.  相似文献   

12.
丁腈橡胶/共聚酰胺共混弹性材料的研究   总被引:5,自引:1,他引:5  
本文探讨了选用共聚酰胺PA(NT-130),采用低温混炼工艺所制备的丁腈橡胶/共聚酰胺共混弹性材料的结构及性能。结果表明:该共混材料的相态为两相分离结构;合适的共混比为80/20—60/40,此时,材料具有高强、高硬度及较高的伸长率和优良的耐摩擦性、耐低温性、耐热油老化性;十腈橡胶与共聚酰胺PA(NT-130)最适宜的共混温度低于PA(NT-130)熔点20-30℃。  相似文献   

13.
高密度聚乙烯/天然橡胶材料的形状记忆特性研究   总被引:3,自引:0,他引:3  
研究了高密度聚乙烯/天然橡胶(HDPE/NR)材料的拉伸与压缩形变回复率、温度对拉伸形变回复率的影响、力学性能,探讨了形状记忆的原理.结果表明:HDPE/NR型共混材料的形变回复率随NR含量增加而提高;拉伸形变回复率高于压缩形变回复率;屈服强度随NR含量增加而下降,断裂延伸率随NR含量增加而上升;冷拉伸—热回复的回复速率最快、回复率最高,形状记忆特性最好.  相似文献   

14.
以海绵状氧化石墨烯(spongy graphene oxide,SG)为载体材料,聚乙二醇单甲醚(methoxy polyethylene glycol,MPEG)为相变物质,通过物理浸渍法制备了定形相变材料。采用X射线衍射、傅里叶变换红外光谱、差示扫描量热法、热失重和热台等方法对定形相变材料的结构、相变性能、热稳定性和定形能力进行表征和分析。结果表明,当SG质量分数为8%时,样品焓值最大且定形效果最好,结晶温度和熔融温度分别为18.7和30.7℃,焓值达到140.3 J/g,当温度达到250℃时,无任何泄漏发生,且热稳定性良好。该定形相变材料有望在聚丙烯相变纤维中实现应用。  相似文献   

15.
The compatibilizer ( TLCP-b-PC) of 60PHB/PET thermotropic liquid crystal polymer (TLCP) and polycarbonate (PC) blend system was prepared. The synthesis and characterization of the compatibilizer as well as its effects on the microscopic morphology and the mechanical properties of the TLCP/PC blend system were studied with a series of analysis ways, such as Soxhlet extraction, infrared absorption spectroscopy, electron microscopy, etc. It is shown that the ideal reaction condition for preparing the compatibilizer is: the reaction temperature of 275℃, the reaction time of 20 minutes and without catalyst. And the compatibilizer can improve the compatibility of the blending system of 60PHB/PET and PC.  相似文献   

16.
以聚乙烯(HDPE),三元乙丙橡胶(EPDM)和其它助剂等对聚丙烯(PP)进行共混改性,可在PP的主转变或(T_g)温度变化不大,并满足一定热刚性要求的条件下,提高制件的耐低温性能,试验中,借助偏光显微镜,DSC和扫描电子显微镜对材料的结构作了考查,并用电子拉力机及动态粘弹仪对其力学特性进行了评定。  相似文献   

17.
高分子量聚丙烯酸改性聚乙烯醇膜的耐水性能   总被引:2,自引:0,他引:2  
将高分子量聚丙烯酸(PAA)与聚乙烯醇(PVA)混合,制备成PAA/PVA混合膜并对其进行热处理。考察了PAA分子量及其含量对混合膜耐水性能的影响,研究了热处理工艺条件对混合膜在沸水环境下的保留率。结果表明,随着PAA分子量和在混合膜中含量的增加,混合膜的耐沸水性能显著提高;当PAA加入量为30%(质量分数),热处理温度和时间分别为160~180℃、3~5min时,混合膜的综合性能最佳;热处理后混合膜的玻璃化转变温度Tg提高到102℃,有效扩大了膜的使用温度范围。  相似文献   

18.
在乙腈、聚乙二醇存在下,用苯甲醚与硝酸铈铵反应合成了邻硝基苯甲醚.最佳反应条件为:苯甲醚与硝酸铈铵的物质的量比为5∶5.5,反应温度50℃,反应时间2h.邻硝基苯甲醚的产率达71.2%.  相似文献   

19.
可瓷化硅橡胶的制备与性能   总被引:5,自引:0,他引:5  
以硅橡胶为基材、低软化点玻璃粉为成瓷填料,采用双辊开炼的方法制备一种可瓷化硅橡胶复合材料。研究玻璃粉用量对复合材料拉伸性能及瓷化性能的影响。结果表明:玻璃粉用量对复合体系的拉伸强度影响较小,在6~7 MPa间波动,对体系的断裂伸长率有显著影响,从约180%下降到110%;玻璃粉用量较大时,瓷化温度从750℃迅速下降到600℃;玻璃粉用量增加可提高低温瓷化物的抗热冲击性。扫描电镜观察结果表明:瓷化物内部存在大量气孔,导致试样的致密性均较差。  相似文献   

20.
促进剂DM/D/TMTD对乒乓球拍胶皮性能的影响研究   总被引:1,自引:0,他引:1  
研究了促进剂二苯胍(D)、二硫化二苯并噻唑(DM)、二硫化四甲基秋兰姆(TMTD)不同并用比对天然橡胶(NR)/顺丁橡胶(BR)乒乓球拍胶皮的硫化特性及硫化胶性能的影响。结果表明:在DM/D并用体系中,随着促进剂D用量的增加,胶料焦烧时间t10和正硫化时间t90缩短,胶料的扯断伸长率、拉伸强度增大。在DM/TMTD并用体系中,促进剂TMTD的加入可以提高胶料的流动性,缩短正硫化时间;随着促进剂TMTD用量的增加,拉伸强度和扯断伸长率降低,耐老化性变化不大。与使用DM/TMTD体系相比,使用DM/D体系时,胶料的焦烧时间长,加工安全,硫化胶的物理性能较好。当DM/D并用比为0.382/0.618时乒乓球拍胶皮的综合性能最好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号