首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 792 毫秒
1.
2.
3.
W S Dynan  R Tjian 《Nature》1985,316(6031):774-778
  相似文献   

4.
5.
6.
L Wu  D S Rosser  M C Schmidt  A Berk 《Nature》1987,326(6112):512-515
  相似文献   

7.
8.
9.
10.
11.
M Takanami  K Sugimoto  H Sugisaki  T Okamoto 《Nature》1976,260(5549):297-302
The nucleotide sequence in the promoter region for the coat protein gene of phage fd has been determined. This sequence contains an endonuclease R-Hha cleavage site at the fifteenth nucleotide upstream from the RNA start site. Cleavage results in loss of promoter function. Comparison with the sequence of another fd promoter indicates that the longest sequence common to both was TATAAT in the region in which RNA polymerase forms a stable initiation complex.  相似文献   

12.
Tomita K  Fukai S  Ishitani R  Ueda T  Takeuchi N  Vassylyev DG  Nureki O 《Nature》2004,430(7000):700-704
The 3'-terminal CCA nucleotide sequence (positions 74-76) of transfer RNA is essential for amino acid attachment and interaction with the ribosome during protein synthesis. The CCA sequence is synthesized de novo and/or repaired by a template-independent RNA polymerase, 'CCA-adding enzyme', using CTP and ATP as substrates. Despite structural and biochemical studies, the mechanism by which the CCA-adding enzyme synthesizes the defined sequence without a nucleic acid template remains elusive. Here we present the crystal structure of Aquifex aeolicus CCA-adding enzyme, bound to a primer tRNA lacking the terminal adenosine and an incoming ATP analogue, at 2.8 A resolution. The enzyme enfolds the acceptor T helix of the tRNA molecule. In the catalytic pocket, C75 is adjacent to ATP, and their base moieties are stacked. The complementary pocket for recognizing C74-C75 of tRNA forms a 'protein template' for the penultimate two nucleotides, mimicking the nucleotide template used by template-dependent polymerases. These results are supported by systematic analyses of mutants. Our structure represents the 'pre-insertion' stage of selecting the incoming nucleotide and provides the structural basis for the mechanism underlying template-independent RNA polymerization.  相似文献   

13.
A system for the continuous directed evolution of biomolecules   总被引:1,自引:0,他引:1  
Esvelt KM  Carlson JC  Liu DR 《Nature》2011,472(7344):499-503
  相似文献   

14.
Specific binding of the transcription factor sigma-54 to promoter DNA.   总被引:11,自引:0,他引:11  
M Buck  W Cannon 《Nature》1992,358(6385):422-424
  相似文献   

15.
Wuite GJ  Smith SB  Young M  Keller D  Bustamante C 《Nature》2000,404(6773):103-106
T7 DNA polymerase catalyses DNA replication in vitro at rates of more than 100 bases per second and has a 3'-->5' exonuclease (nucleotide removing) activity at a separate active site. This enzyme possesses a 'right hand' shape which is common to most polymerases with fingers, palm and thumb domains. The rate-limiting step for replication is thought to involve a conformational change between an 'open fingers' state in which the active site samples nucleotides, and a 'closed' state in which nucleotide incorporation occurs. DNA polymerase must function as a molecular motor converting chemical energy into mechanical force as it moves over the template. Here we show, using a single-molecule assay based on the differential elasticity of single-stranded and double-stranded DNA, that mechanical force is generated during the rate-limiting step and that the motor can work against a maximum template tension of approximately 34 pN. Estimates of the mechanical and entropic work done by the enzyme show that T7 DNA polymerase organizes two template bases in the polymerization site during each catalytic cycle. We also find a force-induced 100-fold increase in exonucleolysis above 40 pN.  相似文献   

16.
Lee JB  Hite RK  Hamdan SM  Xie XS  Richardson CC  van Oijen AM 《Nature》2006,439(7076):621-624
A hallmark feature of DNA replication is the coordination between the continuous polymerization of nucleotides on the leading strand and the discontinuous synthesis of DNA on the lagging strand. This synchronization requires a precisely timed series of enzymatic steps that control the synthesis of an RNA primer, the recycling of the lagging-strand DNA polymerase, and the production of an Okazaki fragment. Primases synthesize RNA primers at a rate that is orders of magnitude lower than the rate of DNA synthesis by the DNA polymerases at the fork. Furthermore, the recycling of the lagging-strand DNA polymerase from a finished Okazaki fragment to a new primer is inherently slower than the rate of nucleotide polymerization. Different models have been put forward to explain how these slow enzymatic steps can take place at the lagging strand without losing coordination with the continuous and fast leading-strand synthesis. Nonetheless, a clear picture remains elusive. Here we use single-molecule techniques to study the kinetics of a multiprotein replication complex from bacteriophage T7 and to characterize the effect of primase activity on fork progression. We observe the synthesis of primers on the lagging strand to cause transient pausing of the highly processive leading-strand synthesis. In the presence of both leading- and lagging-strand synthesis, we observe the formation and release of a replication loop on the lagging strand. Before loop formation, the primase acts as a molecular brake and transiently halts progression of the replication fork. This observation suggests a mechanism that prevents leading-strand synthesis from outpacing lagging-strand synthesis during the slow enzymatic steps on the lagging strand.  相似文献   

17.
D Gidoni  W S Dynan  R Tjian 《Nature》1984,312(5993):409-413
  相似文献   

18.
19.
应用体外转录模型,即通过构建T7 及T7 TIAR 的碱基序列及部分退火的双链模型,合成了一段ODN,其包含单链的TIAR结合位点和1个T7的起始位点.通过进行RNA转录分析,TIAR的结合和替代实验,证明了TIAR可与富含T的单链DNA结合,并且TIAR与DNA的结合可因DNA的转录活性而解离.这一发现为TIAR可在DNA与RNA之间穿梭提供了证据.  相似文献   

20.
Upstream sequences modulate the internal promoter of the human 7SL RNA gene   总被引:4,自引:0,他引:4  
E Ullu  A M Weiner 《Nature》1985,318(6044):371-374
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号