首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A continuous-wave Raman silicon laser   总被引:2,自引:0,他引:2  
Rong H  Jones R  Liu A  Cohen O  Hak D  Fang A  Paniccia M 《Nature》2005,433(7027):725-728
Achieving optical gain and/or lasing in silicon has been one of the most challenging goals in silicon-based photonics because bulk silicon is an indirect bandgap semiconductor and therefore has a very low light emission efficiency. Recently, stimulated Raman scattering has been used to demonstrate light amplification and lasing in silicon. However, because of the nonlinear optical loss associated with two-photon absorption (TPA)-induced free carrier absorption (FCA), until now lasing has been limited to pulsed operation. Here we demonstrate a continuous-wave silicon Raman laser. Specifically, we show that TPA-induced FCA in silicon can be significantly reduced by introducing a reverse-biased p-i-n diode embedded in a silicon waveguide. The laser cavity is formed by coating the facets of the silicon waveguide with multilayer dielectric films. We have demonstrated stable single mode laser output with side-mode suppression of over 55 dB and linewidth of less than 80 MHz. The lasing threshold depends on the p-i-n reverse bias voltage and the laser wavelength can be tuned by adjusting the wavelength of the pump laser. The demonstration of a continuous-wave silicon laser represents a significant milestone for silicon-based optoelectronic devices.  相似文献   

2.
Dynamics of photoluminescence( PL) and electroluminescence( EL) on nanosilicon deposited by Yb is investigated. The sharper PL peaks near 700 nm are observed on silicon quantum dots( Si QDs) coated by Yb. The enhanced EL peaks in the wavelength region from 1 200 nm to 1 600 nm are measured on silicon film deposited by Yb. It is discovered that the EL intensity enhances and the peaks number increases with increasing number of Si-Yb layers. The emission wavelength could be manipulated into the window of optical communication by SiYb bonding on nanosilicon. Si-Yb quantum cascade and PIN hybrid light-emitting diode is designed to apply in optical communicating,which is suitable to be integrated on silicon chip.  相似文献   

3.
铅卤基钙钛矿材料因其优异的光电转化效率、可调禁带宽度、较高载流子迁移率、较大光吸收系数等突出性能,在太阳能电池、发光器件和光电探测等领域获得广泛关注。介绍了铅卤基钙钛矿薄膜、量子点和单晶的制备和相关物理性能,总结了其在太阳能电池、发光二极管(LED)、光电探测器等领域的最新研究进展,讨论了目前存在的问题及未来发展前景。  相似文献   

4.
通过聚乙烯咔唑(PVK)和发绿光的9’9-二辛基芴(DOF)与硒芬(SeH)的共聚物(PFSeH)形成聚合物双层器件结构(ITO/PEDOT/PVK/PFSeH/Ba/A l)实现白光发射.通过优化PVK和PFSeH各层的厚度,得到了光谱稳定的白光发射.在电压为13V时该器件的最大发光效率为0.51 cd/A,相应的亮度为750 cd/m2和色坐标C IE1931为(0.32,0.32).在10~18 V的电压范围内双层器件的白光发射光谱稳定不变.双层器件发白光的原因是由于PVK层的蓝光发射和PFSeH层的绿光发射及PFSeH与PVK双层界面间形成基激复合物的红光发射.  相似文献   

5.
Nomura K  Ohta H  Takagi A  Kamiya T  Hirano M  Hosono H 《Nature》2004,432(7016):488-492
Transparent electronic devices formed on flexible substrates are expected to meet emerging technological demands where silicon-based electronics cannot provide a solution. Examples of active flexible applications include paper displays and wearable computers. So far, mainly flexible devices based on hydrogenated amorphous silicon (a-Si:H) and organic semiconductors have been investigated. However, the performance of these devices has been insufficient for use as transistors in practical computers and current-driven organic light-emitting diode displays. Fabricating high-performance devices is challenging, owing to a trade-off between processing temperature and device performance. Here, we propose to solve this problem by using a novel semiconducting material--namely, a transparent amorphous oxide semiconductor from the In-Ga-Zn-O system (a-IGZO)--for the active channel in transparent thin-film transistors (TTFTs). The a-IGZO is deposited on polyethylene terephthalate at room temperature and exhibits Hall effect mobilities exceeding 10 cm2 V(-1) s(-1), which is an order of magnitude larger than for hydrogenated amorphous silicon. TTFTs fabricated on polyethylene terephthalate sheets exhibit saturation mobilities of 6-9 cm2 V(-1) s(-1), and device characteristics are stable during repetitive bending of the TTFT sheet.  相似文献   

6.
低毒性磷化铟量子点(indium phosphide quantum dot, InP QD)作为最有可能取代有毒重金属镉基量子点的材料, 已经在下一代商业显示和照明领域中显示出巨大潜力. 然而, 合成具有高荧光量子产率(photoluminescence quantum yield, PL QY)的InP QD 仍然具有挑战性. 因此, 提出了以乙酰丙酮镓作为镓源, 在高温下通过乙酰丙酮基对表面配体的活化作用, 生成具有梯度合金核的 In$_{1-x}$Ga$_{x}$P/ZnSe/ZnS 量子点, 有效解决了原有的 InP 与 ZnSe 之间晶格失配的问题; 同时减少核壳界面缺陷, 使量子点的荧光量子产率高达 82%, 所制备量子点发光二极管(quantum dot light-emitting diode, QLED)的外量子效率(external quantum efficiency, EQE)达到 3.1%. 相比传统的 InP/ZnSe/ZnS 结构量子点, In$_{1-x}$Ga$_{x}$P/ZnSe/ZnS 量子点荧光量子产率提高了 25%, 器件的外量子效率提高了近一倍. 该方案为解决 InP 量子点荧光量子产率低、发光器件性能差等问题提供了新的思路.  相似文献   

7.
An efficient room-temperature silicon-based light-emitting diode   总被引:20,自引:0,他引:20  
Ng WL  Lourenço MA  Gwilliam RM  Ledain S  Shao G  Homewood KP 《Nature》2001,410(6825):192-194
There is an urgent requirement for an optical emitter that is compatible with standard, silicon-based ultra-large-scale integration (ULSI) technology. Bulk silicon has an indirect energy bandgap and is therefore highly inefficient as a light source, necessitating the use of other materials for the optical emitters. However, the introduction of these materials is usually incompatible with the strict processing requirements of existing ULSI technologies. Moreover, as the length scale of the devices decreases, electrons will spend increasingly more of their time in the connections between components; this interconnectivity problem could restrict further increases in computer chip processing power and speed in as little as five years. Many efforts have therefore been directed, with varying degrees of success, to engineering silicon-based materials that are efficient light emitters. Here, we describe the fabrication, using standard silicon processing techniques, of a silicon light-emitting diode (LED) that operates efficiently at room temperature. Boron is implanted into silicon both as a dopant to form a p-n junction, as well as a means of introducing dislocation loops. The dislocation loops introduce a local strain field, which modifies the band structure and provides spatial confinement of the charge carriers. It is this spatial confinement which allows room-temperature electroluminescence at the band-edge. This device strategy is highly compatible with ULSI technology, as boron ion implantation is already used as a standard method for the fabrication of silicon devices.  相似文献   

8.
 讨论了近年来石墨烯在太阳能电池、有机发光二极管以及场致发射器件方面的应用研究。石墨烯是碳的同素异形体的一种,是二维的薄膜材料,具有独特的导电特性及机械弯曲性能,可以作为太阳能电池、有机发光器件的柔性电极;石墨烯与有机聚合物材料复合可以形成大的给体受体界面,有利于太阳能电池中激子的扩散速率、载流子迁移率的提高,可以作为有机太阳能电池的电子受体材料;石墨烯具有一维尖锐的刀口状边缘,具有大的电场增强系数,同时由于石墨烯自身的良好导电能力,可以作为场致发射器件中的电子传导与电场发射材料。石墨烯在光电器件中应用的深入研究有望突破目前光电技术的发展瓶颈,是一个极具前景的新研究领域。  相似文献   

9.
表面等离激元可以有效地调控自发辐射体的内量子效率和外量子效率,为发展高效新能源提供了可行的方案。特别是近年来,国内外研究人员将该技术应用到固体发光器件中,取得了许多有价值的研究成果。基于这些研究成果,文章介绍了表面等离激元调控固体发光器件自发辐射的原理和实验进展。  相似文献   

10.
微米级发光二极管(Micro light-emitting diode, Micro-LED)器件具有高亮度、高耐热性、长寿命、低功耗以及极短的响应时间等优点,被视为下一代显示技术的基石,可满足手机、可穿戴手表、AR/VR、微型投影仪、超高亮度显示器等先进设备应用的个性化需求。Micro-LED显示芯片与目前用于高亮度照明的无机半导体芯片具有相似的特性。当管芯直径减小到微米级时,会出现尺寸效应与Droop效应,量子效率急剧下降,器件整体性能受限。介绍了发光二极管的量子效率及影响GaN基Micro-LED量子效率的因素,并提出提升内量子效率和光提取效率的措施,同时对Micro-LED的未来研究与应用进行了总结与展望。  相似文献   

11.
通过蒸镀MgF2薄膜制作了一种可均匀发射可见光的新型金属一绝缘体一金属结型发光器件。论证了它的内层结构、导电机理及其发光的物理图象:Schottky热电子在Au-真空界面激发表面等离极化激元(SPP);Au-真空界面的SPP通过表面粗糙度与外光子耦合。这一图象与该器件的电流-电压(I-V)、电流-温度(I-T)关系及其发射光谱的主要特征一致。  相似文献   

12.
An InGaN/GaN multiple-quantum-well (MQW) light-emitting diode (LED) with a ten-period i (undoped) -InGaN/p (Mg doped) -GaN (2.5 nm/5.0 nm) superlattice (SL) structure, was fabricated. This SL structure that can be regarded as a confinemen t layer of holes to enhance the hole injection efficiency is inse rted between MQW and p-GaN layers. The studied LED device exhibits better current spreading performance and an improved quality, compared with a conventional one without SL structure. Due to the reduced contact resistance as well as more uniformity of carrier s injection, the operation voltage at 20 mA is decreased from 3.32 to 3.14 V. A remarkably reduced reverse-biased leakage current (10-7?10-9 A) and higher endurance of the reverse current pulse are found. The measured output power and external quantum efficiency (EQE) of the studied LED are 13.6 mW and 24.8%, respectively. In addition, significant enhancement of 25.4% in output power as well as increment of 5% in EQE for the studied devices is observed, as the studied devices show s uperior current spreading ability and reduction in dislocations offered by the SL structure.  相似文献   

13.
MISiC肖特基二极管式气体传感器响应特性分析   总被引:1,自引:0,他引:1  
分析了金属-绝缘体-SiC(MISiC)结构肖特基二极管(SBD)气体传感器敏感机理,通过将热电子发射理论与隧道理论结构,建立了器件物理模型。模拟结果表明,响应特性与金属电极类型,绝缘层厚度,气体吸收效率和温度有关。模型结果与实验符合较好。通过模拟,得到MISiC结构最佳绝缘层(SiO2)厚度应为1nm左右。  相似文献   

14.
Carbon nanotube(CNT)films were grown on silicon wafers with and without a nickel layer(Si-CNT and Ni-CNT)via the pyrolysis of iron phthalocyanine.The nickel layer was prepared using the electroless plating method.To study the emission stability of Si-CNT and Ni-CNT cathodes during intense pulsed emission,emission characteristics were measured repeatedly with a diode structure using a Marx generator as a voltage source.For the peak values of the pulsed voltage,which were in the range between 1.62-1.66 MV(corresponding to electric field intensities between 11.57-11.85 V/μm),the first cycle emission current was 109.4 A for Si-CNT and 180.5 A for Ni-CNT.By comparing the normalized emission currents of the Si-CNT and Ni-CNT cathodes,the improvement in the emission stability can be easily quantified.The number of emission cycles necessary for the peak current to decay from 100%to 50%increased from~3 for Si-CNT to~11 for a Ni-CNT film.  相似文献   

15.
Alternating multilayer films of hydrogen diluted hydrogenated protocrystalline silicon (pc-Si:H) were prepared using a plasma-enhanced chemical vapor deposition technique.The microstructure of the deposited films and photoresponse characteristics of their Schottky diode structures were investigated by Raman scattering spectroscopy,Fourier transform infrared spectroscopy and photocurrent spectra.Microstructure and optical absorption analyses suggest that the prepared films were pc-Si:H multilayer films with a two-phase structure of silicon nanocrystals (NCs) and its amorphous counterpart and the band gap of the films showed a decreasing trend with increasing crystalline fraction.Photocurrent measurement revealed that silicon NCs facilitate the spatial separation of photo-generated carriers,effectively reduce the non-radiative recombination rate,and induce a photoresponse peak value shift towards the short-wavelength side with increasing crystallinity.However,the carrier traps near the surface defects of silicon NCs and their spatial carrier confinement result in a significant reduction of the diode photoresponse in the longwavelength region.An enhancement of the photoresponse from 350 to 1000 nm was observed when applying an increased bias voltage in the diode,showing a favorable carrier transport and an effective collection of photo-generated carriers was achieved.Both the spatial separation of the restricted electron-hole pairs in silicon NCs and the de-trapping of the carriers at their interface defects are responsible for the red-shift in photoresponse spectra and enhancement of external quantum efficiency.The results provide fundamental data for the carrier transport control of high-efficiency pc-Si:H solar cells.  相似文献   

16.
采用金属有机物气相外延(MOVPE)技术在c面蓝宝石衬底上,引入脉冲原子层外延技术,制备了一系列表面平整度较高的高Al组分AlGaN基异质结构外延片.并采用电子束金属蒸镀技术及优化热退火方法,获得了良好的欧姆接触电极,进一步将外延片制备成LED管芯.通过对量子结构有源层量子阱混晶组分的设计和调整,掌握并实现了主波长260~330 nm紫外LED结构材料的制备.  相似文献   

17.
可调谐半导体激光吸收光谱(TDLAS)技术具有灵敏度高、选择性强、响应快速等特点。利用中心波长为1 579nm的光通信波段光纤耦合近红外分布反馈(DFB)式半导体激光器,结合波长调制技术,建立了基于TDLAS的水泥工业废气实时检测实验装置。通过波长调谐使激光波长同时覆盖CO和CO2的吸收线,实现对这两种成分的同时检测。CO和CO2的最低检测浓度可达4×10-5(体积分数),满足对水泥工业废气的检测要求。  相似文献   

18.
采用两种经典传统荧光材料作为发光层,制备了非掺杂白色有机电致发光器件(WOLEDs).在器件中两层苝(perylene)以薄层的方式分别置于双极性主体材料CBP(4,4’-di (N-carbazole)biphyenyl)两侧作为蓝光发射体,一层超薄的红荧烯(rubrene)插入CBP中作为橙光发射体.通过改变rubrene在CBP中的插入位置获得了高效率白色荧光器件,最高电流效率为6.6 cd/A(外量子效率为2.6%),最高亮度为18 480 cd/m2,且其中一种器件在200 mA/cm2的高电流密度下,CIE(commission internationale de l’eclairage)色坐标可达理想白光平衡点(0.33,0.33).  相似文献   

19.
Honeycomb structure is extraordinarily effective to trap light,and the efficiency of solar cell with this texture is as high as 24.4%.In this paper,plasma immersion ion implantation and acid etching are applied to texture multi-crystalline silicon.Surface reflectivity and surface morphology are investigated by UV–Vis–NIR spectrophotometer and field emission scanning electron microscopy,respectively.We found that random nano-honeycomb structures have been formed on silicon surface.The weighted average reflectance is 7.68%from 300 to 1,100 nm wavelength region.We obtained honeycomb-textured solar cells following standard fabrication protocol.These solar cells show obvious better performance in short circuit current density([5.4%)and efficiency(*0.8%absolute)compared with acid-textured cell,while other performance parameters,such as open circuit voltage and fill factor,are not deteriorated.  相似文献   

20.
Organic light-emitting diodes (OLEDs) represent a promising technology for large, flexible, lightweight, flat-panel displays. Such devices consist of one or several semiconducting organic layer(s) sandwiched between two electrodes. When an electric field is applied, electrons are injected by the cathode into the lowest unoccupied molecular orbital of the adjacent molecules (simultaneously, holes are injected by the anode into the highest occupied molecular orbital). The two types of carriers migrate towards each other and a fraction of them recombine to form excitons, some of which decay radiatively to the ground state by spontaneous emission. Doped pi-conjugated polymer layers improve the injection of holes in OLED devices; this is thought to result from the more favourable work function of these injection layers compared with the more commonly used layer material (indium tin oxide). Here we demonstrate that by increasing the doping level of such polymers, the barrier to hole injection can be continuously reduced. The use of combinatorial devices allows us to quickly screen for the optimum doping level. We apply this concept in OLED devices with hole-limited electroluminescence (such as polyfluorene-based systems), finding that it is possible to significantly reduce the operating voltage while improving the light output and efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号