首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Summary This paper reviews the discovery and characterization of a behavioural system for entrainment of circadian rhythms. This behavioural system depends on non-photic inputs but interacts with the light-entrainment system. Non-photic stimuli can be powerful quantitatively: behavioural events can shift rhythms by several hours. Nonphotic entrainment offers scope for rephasing biological rhythms in circumstances where light input from the environment is inadequate.  相似文献   

3.
Behavioural entrainment of circadian rhythms   总被引:1,自引:0,他引:1  
This paper reviews the discovery and characterization of a behavioural system for entrainment of circadian rhythms. This behavioural system depends on non-photic inputs but interacts with the light-entrainment system. Non-photic stimuli can be powerful quantitatively: behavioural events can shift rhythms by several hours. Non-photic entrainment offers scope for rephasing biological rhythms in circumstances where light input from the environment is inadequate.  相似文献   

4.
Periodic circadian (24-h) cycles play an important role in daily hormonal and behavioural rhythms. Usually our sleep/wake cycle, temperature and melatonin rhythms are internally synchronized with a stable phase relationship. When there is a desynchrony between the sleep/wake cycle and circadian rhythm, sleep disorders such as advanced and delayed sleep phase syndrome can arise as well as transient chronobiologic disturbances, for example from jet lag and shift work. Appropriately timed bright light is effective in re-timing the circadian rhythm and sleep pattern to a more desired time, ameliorating these disturbances. Other less potent retiming effects may also be obtained from the judicious use of melatonin and exercise.  相似文献   

5.
Summary Artificial bright light cycles (LD 816) of about 5000 lux during the light period were applied to two subjects in a temporal isolation unit, who had shown free-running circadian rhythms in sleep-wakefulness and rectal temperature. The circadian rhythms were successfully entrained by the artificial light cycle, but the phase relation of the rhythms to the light cycle was substantially different between the two subjects. The result indicated that the artificial bright lights are able to reset human circadian rhythms.  相似文献   

6.
Summary Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.  相似文献   

7.
Melatonin and circadian control in mammals   总被引:5,自引:0,他引:5  
S M Armstrong 《Experientia》1989,45(10):932-938
Although pinealectomy has little influence on the circadian locomotor rhythms of laboratory rats, administration of the pineal hormone melatonin has profound effects. Evidence for this comes from studies in which pharmacological doses of melatonin are administered under conditions of external desynchronization, internal desynchronization, steady state light-dark conditions, and phase shifts of the zeitgeber. Taken together with recent findings on melatonin receptor concentration in the rat hypothalamus, particularly at the level of the suprachiasmatic nuclei, these results suggest that melatonin is a potent synchronizer of rat circadian rhythms and has a direct action on the circadian pacemaker. It is possible, therefore, that the natural role of endogenous melatonin is to act as an internal zeitgeber for the total circadian structure of mammals at the level of cell, tissue, organ, whole organism and interaction of that organism with environmental photoperiod changes.  相似文献   

8.
Entrainment of human circadian rhythms by artificial bright light cycles   总被引:4,自引:0,他引:4  
K Honma  S Honma  T Wada 《Experientia》1987,43(5):572-574
Artificial bright light cycles (LD 8:16) of about 5000 lux during the light period were applied to two subjects in a temporal isolation unit, who had shown free-running circadian rhythms in sleep-wakefulness and rectal temperature. The circadian rhythms were successfully entrained by the artificial light cycle, but the phase relation of the rhythms to the light cycle was substantially different between the two subjects. The result indicated that the artificial bright lights are able to reset human circadian rhythms.  相似文献   

9.
Evidence is clear that each melatonin-producing cell in the chick pineal gland contains a circadian oscillator that continues to function in vitro, resulting in a prominent day/night rhythm of melatonin secretion. The aim of the present investigation was to examine whether the circadian organization of the gland has an electrophysiological correlate. To this end, single-cell recordings were made from isolated chick pineal glands kept in vitro under a light/dark cycle of 12:12 h, identical to that of the donors, or under continuous light or darkness. In all the glands investigated, a very small percentage of cells exhibited sodium-dependent spontaneous spike activity with a mean frequency below 10 Hz. The cells revealed rhythms with periods in the 15- to 60-min range and, additionally, exhibited ultradian and circadian rhythms in firing, with periods of 10.75+/-1.06 h and 26.25+/-1.26 h (mean +/- standard deviation), respectively. Most of the cells exhibited circadian rhythms with higher activity during daytime than at night, showing that the electrical activity and melatonin rhythm were out of phase. Under constant light or darkness, the circadian rhythm persisted. When the light/dark cycle of the donors was phase-advanced by 5 h, the cells revealed complete entrainment. We discuss whether the cells, albeit small in number, could function as a secondary ultradian/circadian oscillator contributing to the ultradian/circadian organization of the gland.  相似文献   

10.
Invertebrate circulating hemocytes are key players in the innate immune defense and their continuous renewal from hematopoietic tissues is tightly regulated in crustaceans by astakine, a new family of cytokines sharing a prokineticin (PROK) domain. In vertebrates, brain PROKs function as transmitters of circadian rhythms and we present evidence that hemocyte release from hematopoietic tissues in crayfish is under circadian regulation, a direct result of rhythmic expression of astakine. We demonstrate that the observed variation in astakine expression has an impact on innate immunity assessed as susceptibility to a pathogenic Pseudomonas species. These findings enlighten the importance of comparing immune responses at fixed times not to neglect circadian regulation of innate immunity. Moreover, our results entail an evolutionary conserved function for prokineticins as mediators of circadian rhythm, and for the first time show a role for this domain in circadian regulation of hematopoiesis that may have implications also in vertebrates.  相似文献   

11.
Summary Bright light (2000–3000 lux) of sufficient intensity to suppress human melatonin secretion, acts as a strong zeitgeber in the entrainment of circadian rhythms in man. In polar conditions, light of this intensity is not experienced for several weeks during the winter. The entrainment of human circadian rhythms, in particular that of melatonin, is clearly of interest in these circumstances. Urinary 6-hydroxy melatonin sulphate (aMT6s) is a good index of melatonin secretion in man. In a limited study of seven male volunteers living on an Antarctic base the overall 24-h rhythm of aMT6s excretion was maintained at four different times of year (spring, summer, autumn and winter) and no significant seasonal effects were noted. Cortisol excretion, appeared to be markedly affected by the season although other factors such as social and environmental stress cannot be discounted. These observations suggest that in the absence of a strong light-dark cycle melatonin production may be entrained by other factors.  相似文献   

12.
13.
Bright light (2000-3000 lux) of sufficient intensity to suppress human melatonin secretion, acts as a strong zeitgeber in the entrainment of circadian rhythms in man. In polar conditions, light of this intensity is not experienced for several weeks during the winter. The entrainment of human circadian rhythms, in particular that of melatonin, is clearly of interest in these circumstances. Urinary 6-hydroxy melatonin sulphate (aMT6s) is a good index of melatonin secretion in man. In a limited study of seven male volunteers living on an Antarctic base the overall 24-h rhythm of aMT6s excretion was maintained at four different times of year (spring, summer, autumn and winter) and no significant seasonal effects were noted. Cortisol excretion, appeared to be markedly affected by the season although other factors such as social and environmental stress cannot be discounted. These observations suggest that in the absence of a strong light-dark cycle melatonin production may be entrained by other factors.  相似文献   

14.
Summary The period of freerunning circadian rhythms is significantly shorter and the fraction of sleep is significantly larger in human females than in males, as long as the rhythms run internally synchronized. The sex difference in the period could be a property either of the whole circadian system or of only one of the oscillators in a multi-oscillator system. The sex difference in the sleep fraction could be a fixed property of the sleep-wake rhythm or could depend on interactions in the multi-oscillator system. To investigate these questions, a sample of 33 long-term experiments, in which the rhythms ran internally synchronized in one section and internally desynchronized in another section, were analyzed. The periods of rhythms in rectal temperature were different in females and males during internal synchronization, but became identical during internal desynchronization. In contrast, sex differences in sleep-wake periods were more pronounced when the rhythms were desynchronized than when they were internally synchronized. This result provides evidence that the sex difference in periodicity is a property only of the sleep-wake rhythm; the intrinsic periods of temperature rhythms are identical in females and males, whereas those of sleep-wake rhythms are distinctly shorter in females than in males. In the state of internal synchronization, the joint period is a compromise between the intrinsic periods of the rhythms involved, and therefore it shows a small but significant sex difference. Moreover, the transition from internally synchronized to desynchronized rhythms is combined with a highly significant reduction in the sleep fraction, which is considerably greater in females than in males. These results suggest that the occurrence of internal desynchronization strongly affects the sleep-wake rhythm, and that the influence of rhythm disorders is considerably greater in females than in males.  相似文献   

15.
Most living organisms show circadian rhythms in physiology and behavior. These oscillations are generated by endogenous circadian clocks, present in virtually all cells where they control key biological processes. To study peripheral clocks in vivo, we developed an original model, the Rev-Luc mouse to follow noninvasively and longitudinally Rev-Luc oscillations in peripheral clocks using in vivo bioluminescence imaging. We found in vitro and in vivo a robust diurnal rhythm of Rev-Luc, mainly in liver, intestine, kidney and adipose tissues. We further confirmed in vivo that Rev-Luc peripheral tissues are food-entrainable oscillators, not affected by age or sex. These data strongly support the relevance of the Rev-Luc model for circadian studies, especially to investigate in vivo the establishment and the entrainment of the rhythm throughout ontogenesis. We then showed that Rev-Luc expression develops dynamically and gradually, both in amplitude and in phase, during fetal and postnatal development. We also demonstrate for the first time that the immature peripheral circadian system of offspring in utero is mainly entrained by maternal cues from feeding regimen. The prenatal entrainment will also differentially determine the Rev-Luc expression in pups before weaning underlining the importance of the maternal chrononutrition on the circadian system entrainment of the offspring.  相似文献   

16.
K Honma  S Honma  T Wada 《Experientia》1987,43(11-12):1205-1207
Responsiveness of free-running human circadian rhythms to a single pulse of bright light was examined in a temporal isolation unit. Bright light (5000 lx) of either 3 or 6 h duration, applied during the early subjective day, produced phase-advance shifts in both the sleep-wake cycle and the rhythm of rectal temperature; the light pulse had essentially no effect on the phase of the circadian rhythms, when it was introduced during the late subjective day or the early subjective night. The results indicate that bright light can reset the human circadian pacemaker.  相似文献   

17.
18.
Melatonin from the retina and the pineal gland functions in neuroendocrine hierarchies. Photoreceptors — eyes and extraretinal — detect light. Oscillators — pineal and suprachiasmatic nuclei — act as pacemakers. Driven neuroendocrine rhythms carry temporal hormone signals throughout the body. Light controls melatonin: light sets the phase of the melatonin rhythm and determines the duration of melatonin synthesis. By these means, circadian rhythms (e.g. in locomotor activity and body temperature) and seasonal rhythms (e.g. in reproduction) are controlled.  相似文献   

19.
Summary Oncopeltus fasciatus adults were treated with the antiallatotropin, precocene II and the circadian rhythms of feeding and mating behavior were monitored at 2-h intervals from lights on to lights off under 2 photoperiod regimes. Females ovariectomized as 5th instars were monitored for feeding and mating behavior at 2–3-h intervals from lights on to lights off as well. Neither precocene treatment nor ovariectomy was found to affect the mating or feeding behavioral rhythms under any photoperiod regime.Acknowledgment. This work was supported by a National Science Foundation Grant number PCM76-10560 to M.A.R.  相似文献   

20.
Summary The circadian rest-activity cycle of female hamsters was lengthened by chronic administration of the monoamineoxidase inhibitor antidepressant drug clorgyline. Chronic treatment with clorgyline or the tricyclic antidepressant drug imipramine also induced dissociation of circadian activity rhythm components. Thus these drugs may be added to the very small group of substances (including the prophylactic antidepressant and antimanic drug lithium) that modify circadian frequency and/or coupling between circadian rhythms.A preliminary analysis of these results was presented at the 18th Annual Meeting of the American College of Neuropsychopharmacology, Puerto Rico 197928.Neuropharmacology Branch, National Institute of Mental Health.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号