首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 65 毫秒
1.
把非线性的Dirac方程分裂成线性和非线性2个子问题,这2个子问题具有辛或者多辛结构,可以用辛格式对它们进行离散计算,得到的格式具有整体辛性.此格式较传统的多辛格式具有效率高、计算快等优点.  相似文献   

2.
基于Bridges原理,得到了1 1维Dirac方程的多辛哈密尔顿系统形式及局部守恒律。空间方向采用Fourier拟谱格式,时间方向为中点辛格式,得到的多辛半离散和全离散格式满足局部多辛守恒,证明了波函数模方和局部能量守恒。数值结果表明了算法的长时间有效性。  相似文献   

3.
该文为带有旋转角动量的Gross-Pitaevskii方程构造了分裂高阶紧致差分格式.首先通过时间分裂将其分为线性方程和非线性方程,非线性方程可以通过质量守恒定律进行精确求解,线性方程通过高阶紧致格式和局部1维方法进行离散,最终得到的格式时间方向2阶收敛和空间方向4阶收敛,并保持质量守恒.最后用数值算例验证了格式的收敛阶以及质量守恒性.  相似文献   

4.
把带有阻尼项的4阶薛定谔方程写成标准的哈密尔顿系统,将该哈密尔顿系统分裂成2个哈密尔顿子系统.一个子系统是可分的,可以构造显式的辛格式;而另一个子系统由点点的质量守恒可以精确求解.这样得到的数值格式整体上是辛格式,而且避免了通常辛格式需要迭代的弊端,提高了计算效率.  相似文献   

5.
提出了MKdV方程的一个多辛Hamilton形式,并利用中点辛离散得到一个等价于多辛Preissman积分的新格式,最后用数值例子说明:多辛格式具有良好的长时间数值行为.  相似文献   

6.
该文对含有阻尼效应的非线性薛定谔方程提出了一个新的共形分裂高阶紧致差分格式.首先利用分裂技巧,将复杂方程分裂为3个子问题; 然后对于其中的非线性子问题,利用其逐点质量守恒的性质可以精确求解,避免了迭代,提高了计算效率; 再利用了高阶紧致方法对空间进行离散,在基本不提高成本的情况下,提升了空间精度; 最后通过理论分析与数值实验证明了该格式的高精度、稳定性以及保持共形质量守恒律.  相似文献   

7.
利用Lengdre变换构造了2维Schr(o)dinger方程的多辛形式,对它在时空方向都利用Euler中点格式离散得到了一个2阶多辛格式.理论分析表明格式是保持系统的电荷守恒和能量守恒,且无条件稳定2阶收敛的数值实验验证了理论分析的正确性和多辛格式的优越性.  相似文献   

8.
对非线性"Good" Boussinesq方程的一个多辛方程组进行数值离散,导出方程的离散多辛守恒律,得到一个与此数值离散方法等价的,新的7点显式多辛格式.通过孤立波的数值模拟试验表明,所构造格式既能很好地模拟单孤立波运动的波形,又能很好地模拟双孤立波的碰撞过程,可有效地模拟原孤立波的时间演化,具有长时间的数值稳定性.  相似文献   

9.
薛定谔方程的局部1维多辛格式   总被引:1,自引:0,他引:1  
把局部1维思想和多辛方法相结合,研究了2维薛定谔方程的局部1维多辛格式.把2维薛定谔方程的多辛哈密尔顿形式分裂成2个局部1维的薛定谔方程的多辛方程组.对此局部1维的哈密尔顿系统用多辛格式进行离散.此种多辛格式大大提高了计算的时间效率和空间效率.  相似文献   

10.
考虑了对称正则长波方程(SRLW方程)的多辛算法.通过对SRLW方程作正则变换,得到了它的正则方程组及其几个守恒律.用多辛Euler方法离散此方程组得到了它的多辛格式,并且推导了它的局部能量守恒律的离散误差.消去多辛Euler格式的中间变量,得到了多辛Preissman格式.数值实验验证了所构造的格式的有效性扣长时间的数值稳定性,它能很好地模拟原孤立波,能量精度也较高.  相似文献   

11.
采用分裂技巧研究了2维的Ginzburg-Landau方程构造高效的数值格式.把2维Ginzburg-Landau方程变成线性和非线性问题以避免求解耦合的非线性方程组.为减少存储量和计算量,对线性问题进一步运用局部1维方法,把它分解为2个1维问题求解.所得到的数值格式具有高效、高精度等数值特征.最后,用数值算例模拟了2维Ginzburg-Landau方程所描述的物理现象,新方法具有较大的优越性.  相似文献   

12.
多辛Preissman格式及其应用   总被引:2,自引:2,他引:0  
主要讨论了用于求解多辛哈密尔顿系统的多辛Preissman格式及其简单应用.根据多辛格式必须满足离散的多辛守恒律的基本思想,从Runge-Kutta方法入手,推导出其为多辛格式的充分条件,进而得到了多辛的中点格式,同时举例说明的它在偏微分方程数值求解中的应用.  相似文献   

13.
对哈密尔顿系统而言,辛或多辛积分较传统的数值方法具有优越性。然而,此类数值格式大部分都是隐式的,从而在每一个时间步需要求解一个非线性的代数方程组,这将直接导致计算效率不高。在多辛积分中引进分裂步技巧,称之为分裂步多辛积分,可以弥补这一不足之处,这一数值方法的框架将在该文中简要地讨论,其中,数值例子给出了该方法在物理问题中的应用。  相似文献   

14.
提出了一维扩散反应方程的一种隐式高精度紧致差分格式,空间二阶导数采用四阶紧致差分格式进行离散,时间导数采用四阶向后欧拉公式进行离散,格式截断误差为Oτ4+h4),即时间和空间都可以达到四阶精度,最后通过数值实验验证了本文方法的精确性和可靠性.  相似文献   

15.
对满足周期边界条件的非线性“good”Boussinesq方程作正则变换,得到它的一个多辛方程组及其守恒律.在空间方向用Fourier拟谱方法离散此方程组,然后在时间方向用中点辛格式对半离散方程进行数值求解,得到了非线性“good”Boussinesq方程的多辛Fourier拟谱格式,同时也得到格式的半离散及全离散多辛守恒律.数值实验能很好地模拟原孤立波的运动,验证了所构造格式的有效性与长时间的数值稳定性.  相似文献   

16.
In this paper, we introduce the multisymplectic structure of the nonlinear wave equation, and prove that the classical five-point scheme for the equation is multisymplectic. Numerical simulations of this multisymplectic scheme on highly oscillatory waves of the nonlinear Klein-Gordon equation and the collisions between kink and anti-kink solitons of the sine-Gordon equation are also provided. The multisymplectic schemes do not need to discrete PDEs in the space first as the symplectic schemes do and preserve not only the geometric structure of the PDEs accurately, but also their first integrals approximately such as the energy, the momentum and so on. Thus the multisymplectic schemes have better numerical stability and long-time numerical behavior than the energy-conserving scheme and the symplectic scheme.  相似文献   

17.
基于二阶导数的四阶Padé型紧致差分逼近式,并结合原方程本身,得到了二维Helm-holtz一种四阶精度的紧致差分格式.该格式在每个空间方向上只涉及到三个点处的未知量及其二阶导数值,边界处对于二阶导数利用四阶显式偏心格式.然后,利用Richardson外推法、算子插值法及二阶导数在边界点处的六阶显式偏心格式,将本文构造的二维Helmholtz方程四阶紧致差分格式的精度提高到六阶.最后,通过数值实验验证了本文方法的精确性和可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号