首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Summary There is now considerable evidence implicating several peptides in the control of gastrointestinal epithelial cell proliferation and cell renewal. While some of these may act directly, many may be involved in regulating the powerful trophic effects of the intake and digestion of foold on the gut epithelium.—Several peptides have been associated with the regulation of intestinal cell proliferation. There is little doubt that gastrin is trophic to the stomach, but, its role in the rest of the gastrointestinal tract is debatable. Enteroglucagon has often been associated with increased intestinal epithelial proliferation, but at the moment all the evidence for this is circumstantial. The effects of peptide YY and bombesin warrant further study. The availability of recombinant epidermal growth factor (EGF) has recently enabled us to demonstrate a powerful trophic response to infused EGF throughout the gastrointestinal tract. The increasing availability of peptides will eventually allow the rigorous in vivo evaluation of the trophic role of these potentially very important peptides.  相似文献   

2.
Regulatory peptides in the respiratory system   总被引:2,自引:0,他引:2  
P J Barnes 《Experientia》1987,43(7):832-839
Many regulatory peptides have been described in the respiratory tract of animals and humans. Some peptides (bombesin, calcitonin, calcitonin gene-related peptide) are localised to neuroendocrine cells and may have a trophic or transmitter role. Others are localised to motor nerves. Vasoactive intestinal peptide and peptide histidine isoleucine are candidates for neurotransmitters of non-adrenergic inhibitory fibres and may be cotransmitters in cholinergic nerves. These peptides may regulate airway smooth muscle tone, bronchial blood flow and airway secretions. Sensory neuropeptides (substance P, neurokinin A and B, calcitonin gene-related peptide) may contract airway smooth muscle, stimulate mucus secretion and regulate bronchial blood flow and microvascular permeability. If released by an axon reflex mechanism these peptides may be involved in the pathogenesis of asthma. Other peptides, such as galanin and neuropeptide Y, are also present but their function is not yet known.  相似文献   

3.
Summary Many regulatory peptides have been described in the respiratory tract of animals and humans. Some peptides (bombesin, calcitonin, calcitonin gene-related peptide) are localised to neuroendocrine cells and may have a trophic or transmitter role. Others are localised to motor nerves. Vasoactive intestinal peptide and peptide histidine isoleucine are candidates for neurotransmitters of non-adrenergic inhibitory fibres and may be cotransmitters in cholinergic nerves. These peptides may regulate airway smooth muscle tone, bronchial blood flow and airway secretions. Sensory neuropeptides (substance P, neurokinin A and B, calcitonin gene-related peptide) may contract airway smooth muscle, stimulate mucus secretion and regulate bronchial blood flow and microvascular permeability. If released by an axon reflex mechanism these peptides may be involved in the pathogenesis of asthma. Other peptides, such as galanin and neuropeptide Y, are also present but their function is not yet known.  相似文献   

4.
Intestinal tissue mass was significantly reduced throughout the gastrointestinal tract (p less than 0.001) of intravenously fed (TPN) rats. Urogastrone-epidermal growth factor, (URO-EGF), reversed these changes. Although plasma enteroglucagon and gastrin levels showed a small increase with URO-EGF, this was far less than the gut tissue weight change, suggesting that it was unlikely that they were involved in modulating the proliferative response of the intestine to URO-EGF. Peptide tyrosine tyrosine (PYY) levels were however significantly increased by URO-EGF, indicating that PYY may possibly have a role in the modulation of intestinal cell proliferation.  相似文献   

5.
6.
In addition to their established role as a physical barrier to invading pathogens and other harmful agents, intestinal epithelial cells (IEC) are actively involved in local immune reactions. In the past years, evidence has accumulated suggesting the role of IEC in the immunopathology of intestinal inflammatory disorders (IBD). Recent advances in research on bacteriophages strongly suggest that—in addition to their established antibacterial activity—they have immunomodulating properties that are potentially useful in the clinic. We suggest that these immunomodulating phage activities targeting IEC may open novel treatment perspectives in disorders of the alimentary tract, particularly IBD.  相似文献   

7.
The gastrointestinal tract develops from a simple and uniform tube into a complex organ with specific differentiation patterns along the anterior–posterior and dorso-ventral axes of asymmetry. It is derived from all three germ layers and their cross-talk is important for the regulated development of fetal and adult gastrointestinal structures and organs. Signals from the adjacent mesoderm are essential for the morphogenesis of the overlying epithelium. These mesenchymal–epithelial interactions govern the development and regionalization of the different gastrointestinal epithelia and involve most of the key morphogens and signaling pathways, such as the Hedgehog, BMPs, Notch, WNT, HOX, SOX and FOXF cascades. Moreover, the mechanisms underlying mesenchyme differentiation into smooth muscle cells influence the regionalization of the gastrointestinal epithelium through interactions with the enteric nervous system. In the neonatal and adult gastrointestinal tract, mesenchymal–epithelial interactions are essential for the maintenance of the epithelial regionalization and digestive epithelial homeostasis. Disruption of these interactions is also associated with bowel dysfunction potentially leading to epithelial tumor development. In this review, we will discuss various aspects of the mesenchymal–epithelial interactions observed during digestive epithelium development and differentiation and also during epithelial stem cell regeneration.  相似文献   

8.
The maintenance of mucosal barrier equilibrium in the intestine requires a delicate and dynamic balance between enterocyte loss by apoptosis and the generation of new cells by proliferation from stem cell precursors at the base of the intestinal crypts. When the balance shifts towards either excessive or insufficient apoptosis, a broad range of gastrointestinal diseases can manifest. Recent work from a variety of laboratories has provided evidence in support of a role for receptors of the innate immune system, including Toll-like receptors 2, 4, and 9 as well as the intracellular pathogen recognition receptor NOD2/CARD15, in the initiation of enterocyte apoptosis. The subsequent induction of enterocyte apoptosis in response to the activation of these innate immune receptors plays a key role in the development of various intestinal diseases, including necrotizing enterocolitis, Crohn’s disease, ulcerative colitis, and intestinal cancer. This review will detail the regulatory pathways that govern enterocyte apoptosis, and will explore the role of the innate immune system in the induction of enterocyte apoptosis in gastrointestinal disease.  相似文献   

9.
Cancers of the stomach, colon and exocrine pancreas are major international health problems and result in more than a million deaths worldwide each year. The therapies for these malignancies must be improved. The effects of gastrointestinal (GI) hormonal peptides and endogenous growth factors on these cancers were reviewed. Some GI peptides, including gastrin and gastrin-releasing peptide (GRP) (mammalian bombesin), appear to be involved in the growth of neoplasms of the GI tract. Certain growth factors such as insulin-like growth factor (IGF)-I, IGF-II and epidermal growth factor and their receptors that regulate cell proliferation are also implicated in the development and progression of GI cancers. Experimental investigations on gastric, colorectal and pancreatic cancers with analogs of somatostatin, antagonists of bombesin/GRP, antagonists of growth hormone-releasing hormone as well as cytotoxic peptides that can be targeted to peptide receptors on tumors were summarized. Clinical trials on peptide analogs in patients with gastric, colorectal and pancreatic cancers were reviewed and analyzed. It may be possible to develop new approaches to hormonal therapy of GI malignancies based on various peptide analogs.Received 20 November 2003; accepted 6 January 2004  相似文献   

10.
The trefoil factor family (TFF) comprises a group of small peptides which are highly expressed in tissues containing mucus-producing cells – especially in the mucosa lining the gastrointestinal tract. The peptides seem crucial for epithelial restitution and may work via other pathways than the conventional factors involved in restitution. In vitro studies have shown that the TFFs promote restitution using multiple mechanisms. The peptides also have other functionalities including interactions with the immune system. Moreover, therapeutic effects of the TFFs have been shown in several animal models of gastrointestinal damage. Still it is not clear which of their in vitro properties are involved in the in vivo mode of action. This review describes the TFF family with emphasis on their biological properties and involvement in mucosal protection and repair. Received 10 October 2008; received after revision 07 November 2008; accepted 10 November 2008  相似文献   

11.
The gastrointestinal epithelium is a highly organised tissue that is constantly being renewed. In order to maintain homeostasis, the balance between intestinal stem cell (ISC) self-renewal and differentiation must be carefully regulated. In this review, we describe how the intestinal stem cell niche provides a unique environment to regulate self-renewal and differentiation of ISCs. It has traditionally been believed that the mesenchymal myofibroblasts play an important role in the crosstalk between ISCs and the niche. However, recent evidence in Drosophila and in vertebrates suggests that epithelial cells also contribute to the niche. We discuss the multiple signalling pathways that are utilised to regulate stemness within the niche, including members of the Wnt, BMP and Hedgehog pathways, and how aberrations in these signals lead to disruption of the normal crypt–villus axis. Finally, we also discuss how CDX1 and inhibition of the Notch pathway are important in specifying enterocyte and goblet cell differentiation respectively.  相似文献   

12.
Vertebrate epithelial appendages are elaborate topological transformations of flat epithelia into complex organs that either protrude out of external (integument) and internal (oral cavity, gut) epithelia, or invaginate into the surrounding mesenchyme. Although they have specific structures and diverse functions, most epithelial appendages share similar developmental stages, including induction, morphogenesis, differentiation and cycling. The roles of the SHH pathway are analyzed in exemplary organs including feather, hair, tooth, tongue papilla, lung and foregut. SHH is not essential for induction and differentiation, but is involved heavily in morphogenetic processes including cell proliferation (size regulation), branching morphogenesis, mesenchymal condensation, fate determination (segmentation), polarizing activities and so on. Through differential activation of these processes by SHH in a spatiotemporal-specific fashion, organs of different shape and size are laid down. During evolution, new links of developmental pathways may occur and novel forms of epithelial appendages may emerge, upon which evolutionary selections can act. Sites of major variations have progressed from the body plan to the limb plan to the epithelial appendage plan. With its powerful morphogenetic activities, the SHH pathway would likely continue to play a major role in the evolution of novel epithelial appendages.  相似文献   

13.
Several different cell types constitute the intestinal wall and interact in different manners to maintain tissue homeostasis. Elegant reports have explored these physiological cellular interactions revealing that glial cells and neurons not only modulate peristalsis and mechanical stimulus in the intestines but also control epithelial proliferation and sub-epithelial angiogenesis. Although colon carcinoma arises from epithelial cells, different sub-epithelial cell phenotypes are known to support the manifestation and development of tumors from their early steps on. Therefore, new perspectives in cancer research have been proposed, in which neurons and glial cells not only lead to higher cancer cell proliferation at the tumor invasion front but also further enhance angiogenesis and neurogenesis in tumors. Transformation of physiological neural activity into a pro-cancer event is thus discussed for colon carcinogenesis herein.  相似文献   

14.

A highly conserved but convoluted network of neurons and glial cells, the enteric nervous system (ENS), is positioned along the wall of the gut to coordinate digestive processes and gastrointestinal homeostasis. Because ENS components are in charge of the autonomous regulation of gut function, it is inevitable that their dysfunction is central to the pathophysiology and symptom generation of gastrointestinal disease. While for neurodevelopmental disorders such as Hirschsprung, ENS pathogenesis appears to be clear-cut, the role for impaired ENS activity in the etiology of other gastrointestinal disorders is less established and is often deemed secondary to other insults like intestinal inflammation. However, mounting experimental evidence in recent years indicates that gastrointestinal homeostasis hinges on multifaceted connections between the ENS, and other cellular networks such as the intestinal epithelium, the immune system, and the intestinal microbiome. Derangement of these interactions could underlie gastrointestinal disease onset and elicit variable degrees of abnormal gut function, pinpointing, perhaps unexpectedly, the ENS as a diligent participant in idiopathic but also in inflammatory and cancerous diseases of the gut. In this review, we discuss the latest evidence on the role of the ENS in the pathogenesis of enteric neuropathies, disorders of gut–brain interaction, inflammatory bowel diseases, and colorectal cancer.

  相似文献   

15.
Since we live in a dirty environment, we have developed many host defenses to contend with microorganisms. The epithelial lining of our skin, gastrointestinal tract and bronchial tree produces a number of antibacterial peptides, and our phagocytic neutrophils rapidly ingest and enzymatically degrade invading organisms, as well as produce peptides and enzymes with antimicrobial activities. Some of these antimicrobial moieties also appear to alert host cells involved in both innate host defense and adaptive immune responses. The epithelial cells are a source of constitutively produced beta defensin (HBD1) and proinflammatory cytokine-inducible beta defensins (HBD2 and -3) and cathelicidin (LL37). The neutrophils-derived antimicrobial peptides are released on demand from their cytoplasmic granules. They include the enzymes cathepsin G and chymase, azurocidin, a defensins and cathelicidin. In contrast, C5a and C3b are produced by activation of the serum complement cascade. The antimicrobial moieties direct the migration and activate target cells by interacting with selected G-protein-coupled seven-transmembrane receptors (GPCRs) on cell surfaces. The beta defensins interact with the CCR6 chemokine GPCRs, whereas cathelicidins interact with the low-affinity FPRL-1 receptors. The neutrophil-derived cathepsin G acts on the high-affinity FMLP receptor (GPCR) known as FPR, while the receptors for chymase and azurocidin have not been identified as yet. The serum-derived C5a uses a GPCR known as C5aR to mediate its chemotactic and cell-activating effects. Consequently, all these ligand-receptor interactions in addition to mediating chemotaxis also activate receptor-expressing cells to produce other mediators of inflammation.  相似文献   

16.
The functioning of a group of cells as a tissue depends on intercellular communication; an example is the spread of action potentials through intestinal tissue resulting in synchronized contraction. Recent evidence for cell heterogeneity within smooth muscle tissues has renewed research into cell coupling. Electrical coupling is essential for propagation of action potentials in gastrointestinal smooth muscle. Metabolic coupling may be involved in generation of pacemaker activity. This review deals with the role of cell coupling in tissue function and some of the issues discussed are the relationship between electrical synchronization and gap junctions, metabolic coupling, and the role of interstitial cells of Cajal in coupling.  相似文献   

17.
Receptor tyrosine kinases play essential roles in cell proliferation and differentiation. We have recently shown that peptides corresponding to the transmembrane domains of the epidermal growth factor (EGF) and ErbB2 receptors inhibit their corresponding receptor activation in cancer cell lines. We extend this observation to cells transfected with chimeric insulin receptors where the transmembrane domain has been replaced by that of the EGF receptor or a mutated Erb2 domain. Peptides corresponding to the transmembrane domains of the EGF receptor and ErbB2 are able to inhibit specifically the autophosphorylation of insulin receptors with the corresponding domain. This inhibitory effect is correlated with the propensity of the different transmembrane domains to self-associate in a genetic reporter assay. Thus, our data strengthen the notion that transmembrane domains are involved in erbB receptor activation, and that these receptors can be modulated by inhibiting proteinprotein interactions within the membrane.Received 25 May 2005; received after revision 13 July 2005; accepted 22 July 2005  相似文献   

18.
Statins may exert beneficial effects on Alzheimer’s disease (AD) patients. Based on the antineoplastic and apoptotic effects of statins in a number of cell types, we hypothesized that statins may be able to protect neurons by controlling the regulation of cell cycle and/or apoptosis. A growing body of evidence indicates that neurodegeneration involves the cell-cycle activation in postmitotic neurons. Failure of cell-cycle control is not restricted to neurons in AD patients, but occurs in peripheral cells as well. For these reasons, we studied the role of simvastatin (SIM) on cell survival/death in lymphoblasts from AD patients. We report here that SIM induces apoptosis in AD lymphoblasts deprived of serum. SIM interacts with PI3K/Akt and ERK1/2 signaling pathways thereby decreasing the serum withdrawal-enhanced levels of the CDK inhibitor p21Cip1 (p21) and restoring the vulnerability of AD cells to trophic factor deprivation.  相似文献   

19.
The functioning of a group of cells as a tissue depends on intercellular communication; an example is the spread of action potentials through intestinal tissue resulting in synchronized contraction. Recent evidence for cell heterogeneity within smooth muscle tissues has renewed research into cell coupling.Electrical coupling is essential for propagation of action potentials in gastrointestinal smooth muscle.Metabolic coupling may be involved in generation of pacemaker activity. This review deals with the role of cell coupling in tissue function and some of the issues discussed are the relationship between electrical synchronization and gap junctions, metabolic coupling, and the role of interstitial cells of Cajal in coupling.  相似文献   

20.
Trefoil protein 1 (TFF1) is a small secreted protein belonging to the trefoil factor family of proteins, that are present mainly in the gastrointestinal (GI) tract and play pivotal roles as motogenic factors in epithelial restitution, cell motility, and other incompletely characterized biological processes. We previously reported the up-regulation of TFF1 gene in copper deficient rats and the unexpected property of the peptide to selectively bind copper. Following the previous evidence, here we report the characterization of the copper binding site by fluorescence quenching spectroscopy and mass spectrometric analyses. We demonstrate that Cys58 and at least three Glu surrounding residues surrounding it, are essential to efficiently bind copper. Moreover, copper binding promotes the TFF1 homodimerization, thus increasing its motogenic activity in in vitro wound healing assays. Copper levels could then modulate the TFF1 functions in the GI tract, as well as its postulated role in cancer progression and invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号