首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

2.
设μ为正常数。令■这里,当n→∞时,■则勒襄特级数sum from n=0 to ∞a_nP_n(z)=a_0 a_1P_1(z) … a_nP_n(z) …以E_μ为其收歛椭圆。在E_μ内令这个级数的和为f(z),并用f(z)表示从它所产生的完全解析函数。如果f(z)在E_μ上—点z_0处解析,则sum from n=0 to ∞a_nP_n(z)在点z_0处收歛。从此即可推出:如果sum from n=0 to ∞a_nP_n(z)在E_μ上一点z_0处发散,则点z_0必为f(z)的奇点。  相似文献   

3.
记单位圆盘E={z||z|<1)中满足条件f(0)=0和f~(?)(0)=1的解析函数f(z)组成的类为A。设f(z)=z+sum from k=2 to ∞ a_kz~k∈A,δ≥0,St.Ruscheweyh在[1]中定义邻域N_s(f)如下: N_δ(f)={g(z)=2+sum from k=2 to ∞ b_kz~k|sum from k=2 to ∞ k|a_k-b_k|≤δ}。[1],[2]研究了使得N_δ(f)中所有函数g(z)含于E中某单叶函数类的条件。本文的目  相似文献   

4.
本文给出了勒襄特(Legendre)级数sum from n=0 to ∞a_nP_n(z)在收敛椭园E_p上一点z_0=cosh(μ iβ_0)收敛的充分必要条件为级数sum from n=0 to ∞δ_ne~(nβ0~i)收敛,其中δ_n=n~(-(1/2))e~(nμ)a_n。本文证明了勒襄特级数的亚倍尔(Abel)型定理:若级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0),且sum from n=0 to ∞a_nP_n(z_0)收斂,则sum from n=0 to ∞a_nP_n(z)=sum from n=0 to ∞a_nP_n(z_0),这里z→z_0是在E_μ内沿与E_μ正交的双曲线H_(β_0)进行。本文还证明了勒襄特级数的刀培(Tauber)型定理:设级数sum from n=0 to ∞a_nP_n(z)的收斂椭园为E_μ,z_0=cosh(μ iβ_0)为E_μ上一定点,令δ_n=n~(-(1/2))e~(nμ)a_n,如果δ_n=o(1/n),且sum from n=0 to ∞a_nP_n(z)=S,这里z→z_0是在E_μ内沿H_(β_0)进行,sum from n=0 to ∞a_nP_n(z_0)收敛,其和为S。  相似文献   

5.
设Ω={f(z):f(z)在|z|<1内解析,f(z)=z sum from n=2 to ∞(an ibn)zn,an,bn为实数,sum from n=2 to ∞n (a2n bn2)~(1/2)≤1},找出了函数族Ω的极值点与支撑点.  相似文献   

6.
§1.引言设函数 f(z)=z+sum from n=2 to ∞ a_nz~n∈S是单位圆内的单叶解析函数,函数 f_1(z)=sum from n=1 to ∞ a_(2n-1)z~(2n-1),|z|=γ<1,(一)戈鲁净对 f(z)及 f_1(z)有下面准确的估计(1):|f(z)|+|f(-z)|≤γ/((1-γ)~2)+γ/((1+γ)~2) (1)|f′(z)|+|f′(-z)|≤(1+γ)/((1-γ)~3)+(1-γ)/((1+γ)~3) (2)|f_1(z)|≤γ(1+γ~2)/((1-γ~2)~2),|f′_1(z)|≤(1+6γ~n+γ~4)/((1-γ~2)~3),|(zf′_1(z))/(f_1(z))|≤(1+6γ~2+γ~4)/(1-γ~4) (3)本文将证明:设 f(z)=z+sum from n=2 to ∞ c_nz~n 是星形单叶函数,F(z)=z+sum from n=2 to ∞ a_nz~n 是凸形单叶函数,函数 F_1(z)  相似文献   

7.
设Σ~1表示|z|>1上的单叶函数 g(z)=z+sum from n=1 to ∞ b_nz~(-n)所组成的类。它的逆函数类由 G(W)=W+sum from n=1 to ∞ B_nW~(-n)组成本文对n=13的情况,证实了著名的Springer猜测,即有 |B_(25)|≤208012  相似文献   

8.
利用致密性定理获得有界数列{y_n}收敛的一个充分条件:∨ε>0,■N∈Z+,使得当n>Z时,不等式yn-yn-1<ε恒成立。并发现任意项级数收敛的一个判定定理:如果级数sum from n=1 to ∞ a_n有界,且limn→∞a_n=0,则该级数收敛。由此获得:级数sum from n=1 to ∞ sin~(1+2s/t)=n/n~α收敛,其中s∈Z,t∈Z+,0<α≤1。并进行推广:如果s∈Z,t∈Z~+,0<α≤1,则级数sum from n=1 to ∞sin~1+2s/t)(an)/n~α收敛。再获得一个一般性结论:设有界函数f(n)满足0≤f(n)0,k,l∈Z。  相似文献   

9.
研究了由幂级数所表示的整函数f(z)=sum from n=0 to ∞(a_nz~(n))的系数重排问题,得到了如下结果:任意整函数f(z)=sum from n=0 to ∞(a_nz~n)的系数经重排P(n′→n)后仍为整函数且其级不变的充要条件是n′=n+0(n)。  相似文献   

10.
研究了在{Xn(),n≥0},为φ-混合序列且满足lim/n→∞E|Xn()=a>0、sup n≥0E|Xn()|q<∞(q>1)的条件下,随机Dirichlet级数sum from n=0 to ∞ anXn()e-λns系数的重排与和函数增长级的关系,得到了与非随机Dirichlet级数sum from n=`0 to ∞ ane-λns类似的结果.  相似文献   

11.
1.引言设S={f(z)=z+sum from n=2 to ∞a_■z~n.;f在D:|z|<1内解析、单叶}1916年Bieberbach提出猜想:若f∈S,则(1.1)|a.|≤n,n=2,3,…,最近,Louis de Branges证明了下面的重要结果,它蕴含着Bieberbach猜想。De Branges定理,若f∈S,且(1.2)log (f(z))/z=sum from k=1 to ∞c_(?)z~k,(z∈D)则,对于n=1,2,…,有(1.3)sum from k=1 to n k(n+1-k)|Ck|~2≤4 sum from k=1 to n (n+1-k)/k. 这个不等式实际上是1971年Milin的猜想[7](例如可参阅[4,P.155])  相似文献   

12.
設L可积函数f(x)的富理埃級数是 (x)~α_0/2+sum from n=1 to ∞(α_n cos nx+b_n sin nx)=sum from n=0 to ∞(A_n(x))其导級数是sum from n=1 to ∞(n(b_n cos nx-α_n sin nx))=sum from n=1 to ∞(nB_n(x))。又設s_n=sum from k=0 to n(u_k),当  相似文献   

13.
在本文中我们证明了,若f(z)为单叶函数族K内的一函数,(w)为其逆并且(w)=w sum from n=1 to ∞ r_nw~n,则当n=8时,|r_n|1,等号成立仅当f(z)为f_0(z)=z/1-z及其族转的情形。在此之前,Libera,R.J.和Zlotkiewicz,E.J.考察了1n7时的情形。  相似文献   

14.
1900年12月4日德国物理学家普朗克发表论文,提出能量子假设,称ε_o=hv为能量子。他在这一假设的基础上,又运用经典统计,得出普朗克黑体辐射公式。据经典统计,在相空间dτ内,振子能量为E_n=nε_o的几率与e~(-nεo'KT)成正比,所以在温度为TK时,一个线性谐振子的平均能量是: ■=sum from n=0 to ∞ E_ne~(-nε_0/KT)/sum from n=0 to ∞ e~(-nε_0/KT)=sum from n=0 to ∞ nhve~(-ahv/KT)/sum from n=0 to ∞ e~(-nhv/KT) (sum from n=0 to ∞ ne~(-nx)/sum from n=0 to ∞ e~(-nx))hv  相似文献   

15.
文中给出矩阵级数求和公式:sum from k=0 to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)或sum from k=-∞ to ∞(C_k(A-αE))=Pdiag{f(λ_1),……,f(λ_n)}P~(-1)此处C_k(k=0,±1,……)和α是复数,A是n阶矩阵,E是单位阵,而P是满足下列条件的矩阵:P~(-1)AP=diag{λ.,……,λ_n}λ_i∈D(i=1,2……,n),D是Talo级数f(Z)=sum from k=0 to ∞(C_k(Z-α)~k)或Laurent级数f(Z)=sum from k=-∞ to ∞(C_k(Z-α)~k)的收敛域.同时,我们证明了有介单调的矩阵序列收敛,而且按照任何矩阵范数,上述矩阵序列也是收敛的.  相似文献   

16.
本文是研究整函数的增长性.应用无穷级整函数的对数级与对数型的定义,以及参考文献[2]中的一些结果,进一步得到了关于无穷级整函数对数级与对数型的一些重要性制裁.现将主要结果叙述于下:定理1:设整函数f(Z)=sum from n=0 to ∞ a_nZ~n的对数级为ρ1,则有ρ1=(?)定理2:设整函数f(Z)=sum from n=0 to∞(a_nZ~n)的对数级为ρ_1,并且0<ρ_1<+∞,其对数型为σ_1,则有定理3:设整函数f(z)=sum from n=0 to∞( a_nZ~n),存在,并且0<ρ<十∞,则当0<ν<+∞时,ρ必为f(Z)的对数级,进而ν为f(Z)的对数型.定理4:设f(Z)=sum from n=0 to∞(a_nZ~n)为无穷级整函数,则f(Z)与它的导函数f’(z)具有相同的对数级与对数型.  相似文献   

17.
对于单位圆盘上的解析函数f(z),本文定义了f(z)的σ-邻域N_σ(f)及其导数的σ-邻域N′_σ(f),得到了N_σ(f)和N′σ(f)包含于单叶函数的某些子族的条件。推广了A.Kobori的结果:如果f(z)=z sum from k=2 to ∞a_kz~k满足条件sum from k=2 to ∞k~2|a_k|1≤1,则f(z)是凸函数。  相似文献   

18.
定理设f(z)是下级μ有穷的亚纯函数,P_i是f~((i))(z)的非零有穷亏值数,而f~((0))(z)=f(z);当i为负整数时,f~((i))(z)为f(z)的(i)次原函数(若存在的话)。若对某一正整数k, sum from n=a to δ(a,f~((k)))=2,和 sum from i=-∞ to ∞ P_i=μ。则f~((i))(z)(i=0,±1,±2,…)的所有有穷非零亏值都分别为它们的渐近值。  相似文献   

19.
定理1.设定义在[1,∞)上的正值函数μ(x)满足下面的条件:(ⅰ)存在N_0>0,使得当x≥N_0时,函数x~2μ(x)是增加的;(ⅱ)存在常数c>1,使得对于一切x,有Aμ(x)≤μ(cx)≤Bμ(x),A>0,B>0。设f(x)∈L~p(0,2π),1p,则当积分integral from n=0 to 1 1/t~2μ(1/t)[integral from n=0 to 2x|f(x t)-f(x-t)|pdx]~(β/p)dt (1) 收敛时,下面的级数收敛: sum from n=1 to ∞μ(n)[sum from k=n to ∞ρ_k~p k~(p-2)]~(β/p),(ρ_k~2=a_k~2 b_k~2) (2) 定理2.设μ(t)是正值函数, Σμ(n)/n~β<∞(β>0),并且存在常数c>0,使得μ(cx)~μ(x),x→∞。令An=sum from k=n to ∞ρ_k~p k~(p-2)。若存在正数α<1,使得An·n~(p-α)当n≥N_0时是增加的,则由(2)的收敛性可以得出(1)的收敛性。  相似文献   

20.
本文主要证明了下述定理: 设f(z)=sum from n=0 to∞a_nz~(λ_n)为一超越整函数,那么: (1)当f(z)具有(b,d)型A.P.间隙时,对任一有穷复数a,都有δ_s(a,f)≤1-1/d;当b>0时,还有:sum from a≠∞ to δ(a,f)≤1-1/d。 (2):当λ_(m+1)-λ_m(m=n,n+1,…)的最大公因子d_n→∞(n→∞)时,对在一慢增长的亚纯函数a(z),都有:_s(a(z),f)≤1/2。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号